skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Natural deep eutectic systems for nature‐inspired cryopreservation of cells
Abstract

Natural deep eutectic systems (NADES) are emerging as potential cryoprotective agents (CPA) for cell preservation. In this investigation, we develop an optimized CPA formulation using trehalose‐glycerol NADES (T:G) diluted in Normosol‐R and supplemented with isoleucine. Differential scanning calorimetry (DSC) is used to define the thermophysical properties of NADES‐based solutions, and Raman spectroscopy is used to characterize the effect of NADES on ice formation and hydrogen bonding. Jurkat cells are cryopreserved in each solution, and post‐thaw cell recovery, apoptosis, and growth are quantified. Raman spectra and heat maps show that NADES suppresses both ice formation and dehydration of the nonfrozen region. Supplementing NADES with isoleucine does not affect the solution's thermophysical properties but significantly improves the cells' survival and proliferation post‐thaw. The study indicates that thermophysical properties of CPA solutions alone cannot predict optimal cell survival, suggesting that stabilization of biological structures by CPAs may play a role in successful cryopreservation.

 
more » « less
NSF-PAR ID:
10454361
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
AIChE Journal
Volume:
67
Issue:
2
ISSN:
0001-1541
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Primordial germ cells (PGCs) are the germline precursors that give rise to oocytes and sperm, ensuring the continuation of life. While the PGC specification is extensively studied, it remains elusive how the PGC population is sustained and expanded after they migrate to embryonic gonads before birth. This study demonstrates that NRF1, a known regulator for mitochondrial metabolism, plays critical roles in post‐migrating PGC development. We show that NRF1 protein level gradually increases in post‐migrating PGCs during embryonic development. ConditionalNrf1knockout from embryonic germ cells leads to impaired PGC proliferation and survival. In addition, NRF1 may also actively drive PGC derivation from pluripotent stem cells. Using whole genome transcriptome profiling and ChIP‐seq analyses, we further reveal that NRF1 directly regulates key signalling molecules in PGC formation, transcription factors in proliferation and cell cycle and enzymes in mitochondrial metabolism. Overall, our findings highlight an essential requirement of NRF1 in regulating a broad transcriptional network to support post‐migrating PGC development both in vitro and in vivo.

     
    more » « less
  2. Additives that help cells survive the stresses of freezing and thawing are known as cryoprotective agents (CPAs). Two different types of CPAs have been identified: penetrating and non-penetrating. Common penetrating CPAs include dimethylsulfoxide (DMSO) and glycerol. The location of a CPA (intracelluar or extracellular) is important for understanding the molecular mechanisms of action for the agent. Low-temperature Raman spectroscopy is a label-free method of detecting the location of CPAs at low temperature with high spatial resolution and chemical specificity. To this end, cells cryopreserved in DMSO using a variety of cooling rates and DMSO concentrations and imaged using Raman spectroscopy were analyzed using automated image analysis to determine the partitioning ratio (concentration of DMSO outside/concentration of DMSO inside the cell). The partitioning ratio was roughly 1 for Jurkat cells frozen at 1°C/min in varying concentrations of DMSO with the exception of 1% DMSO which had a partitioning ratio of 0.2. The partitioning ratio increased from 1 to 1.3 as the cooling rate increased from 1°C to 5°C/min. Different cell types, specifically sensory neurons cells and human induced pluripotent stem cells, exhibited differences in partitioning ratio when frozen in 10% DMSO and 1°C/min suggesting that differences in freezing response may result from differences in solute partitioning. The presence of intracellular ice changed the distribution of DMSO inside the cell and also the partitioning ratio.

     
    more » « less
  3. Abstract

    Biomaterials are key factors in regenerative medicine. Matrices used for cell delivery are especially important, as they provide support to transplanted cells that is essential for promoting cell survival, retention, and desirable phenotypes. Injectable matrices have become promising and attractive due to their minimum invasiveness and ease of use. Conventional injectable matrices mostly use hydrogel precursor solutions that form solid, cell‐laden hydrogel scaffolds in situ. However, these materials are associated with challenges in biocompatibility, shear‐induced cell death, lack of control over cellular phenotype, lack of macroporosity and remodeling, and relatively weak mechanical strength. This Progress Report provides a brief overview of recent progress in developing injectable matrices to overcome the limitations of conventional in situ hydrogels. Biocompatible chemistry and shear‐thinning hydrogels have been introduced to promote cell survival and retention. Emerging investigations of the effects of matrix properties on cellular function in 3D provide important guidelines for promoting desirable cellular phenotypes. Moreover, several novel approaches are combining injectability with macroporosity to achieve macroporous, injectable matrices for cell delivery.

     
    more » « less
  4. Abstract

    The segregation of bacteria, inorganic solutes, and total organic carbon between liquid water and ice during winter ice formation on lakes can significantly influence the concentration and survival of microorganisms in icy systems and their roles in biogeochemical processes. Our study quantifies the distributions of bacteria and solutes between liquid and solid water phases during progressive freezing. We simulated lake ice formation in mesocosm experiments using water from perennially (Antarctica) and seasonally (Alaska and Montana, United States) ice‐covered lakes. We then computed concentration factors and effective segregation coefficients, which are parameters describing the incorporation of bacteria and solutes into ice. Experimental results revealed that, contrary to major ions, bacteria were readily incorporated into ice and did not concentrate in the liquid phase. The organic matter incorporated into the ice was labile, amino acid‐like material, differing from the humic‐like compounds that remained in the liquid phase. Results from a control mesocosm experiment (dead bacterial cells) indicated that viability of bacterial cells did not influence the incorporation of free bacterial cells into ice, but did have a role in the formation and incorporation of bacterial aggregates. Together, these findings demonstrate that bacteria, unlike other solutes, were preferentially incorporated into lake ice during our freezing experiments, a process controlled mainly by the initial solute concentration of the liquid water source, regardless of cell viability.

     
    more » « less
  5. Abstract

    Patients with metastatic triple‐negative breast cancer (TNBC) have a poor prognosis, so new therapies or drug combinations that achieve more effective and durable responses are urgently needed. Here, a combination therapy using cowpea mosaic virus (CPMV) and low doses of cyclophosphamide (CPA) is developed with remarkable synergistic efficacy against 4T1 mouse tumors in vivo. The combination therapy not only attenuates the growth of primary tumor and increases survival, but also suppresses distant tumor growth and reduces lung metastasis. Mechanistic analysis indicates that the combination of CPMV and CPA increases the secretion of several cytokines, activates antigen‐presenting cells, increases the abundance of tumor infiltrating T cells, and systematically reverses the immunosuppression. These results show that the combination of CPMV in situ vaccination with chemotherapy may become a potent new strategy for the treatment of TNBC.

     
    more » « less