skip to main content


Title: Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence
Summary

In the oceans, viruses that infect bacteria (phages) influence a variety of microbially mediated processes that drive global biogeochemical cycles. The nature of their influence is dependent upon infection mode, be it lytic or lysogenic. Temperate phages are predicted to be prevalent in marine systems where they are expected to execute both types of infection modes. Understanding the range and outcomes of temperate phage–host interactions is fundamental for evaluating their ecological impact. Here, we (i) review phage‐mediated rewiring of host metabolism, with a focus on marine systems, (ii) consider the range and nature of temperate phage–host interactions, and (iii) draw on studies of cultivated model systems to examine the consequences of lysogeny among several dominant marine bacterial lineages. We also readdress the prevalence of lysogeny among marine bacteria by probing a collection of 1239 publicly available bacterial genomes, representing cultured and uncultivated strains, for evidence of complete prophages. Our conservative analysis, anticipated to underestimate true prevalence, predicts 18% of the genomes examined contain at least one prophage, the majority (97%) were found within genomes of cultured isolates. These results highlight the need for cultivation of additional model systems to better capture the diversity of temperate phage–host interactions in the oceans.

 
more » « less
Award ID(s):
1737237
NSF-PAR ID:
10454374
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
22
Issue:
12
ISSN:
1462-2912
Page Range / eLocation ID:
p. 4919-4933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gottesman, Susan (Ed.)
    ABSTRACT Phage P1 is a temperate phage which makes the lytic or lysogenic decision upon infecting bacteria. During the lytic cycle, progeny phages are produced and the cell lyses, and in the lysogenic cycle, P1 DNA exists as a low-copy-number plasmid and replicates autonomously. Previous studies at the bulk level showed that P1 lysogenization was independent of m ultiplicity o f i nfection (MOI; the number of phages infecting a cell), whereas lysogenization probability of the paradigmatic phage λ increases with MOI. However, the mechanism underlying the P1 behavior is unclear. In this work, using a fluorescent reporter system, we demonstrated this P1 MOI-independent lysogenic response at the single-cell level. We further observed that the activity of the major repressor of lytic functions (C1) is a determining factor for the final cell fate. Specifically, the repression activity of P1, which arises from a combination of C1, the anti-repressor Coi, and the corepressor Lxc, remains constant for different MOI, which results in the MOI-independent lysogenic response. Additionally, by increasing the distance between phages that infect a single cell, we were able to engineer a λ-like, MOI-dependent lysogenization upon P1 infection. This suggests that the large separation of coinfecting phages attenuates the effective communication between them, allowing them to make decisions independently of each other. Our work establishes a highly quantitative framework to describe P1 lysogeny establishment. This system plays an important role in disseminating antibiotic resistance by P1-like plasmids and provides an alternative to the lifestyle of phage λ. IMPORTANCE Phage P1 has been shown potentially to play an important role in disseminating antibiotic resistance among bacteria during lysogenization, as evidenced by the prevalence of P1 phage-like elements in animal and human pathogens. In contrast to phage λ, a cell fate decision-making paradigm, P1 lysogenization was shown to be independent of MOI. In this work, we built a simple genetic model to elucidate this MOI independency based on the gene-regulatory circuitry of P1. We also proposed that the effective communication between coinfecting phages contributes to the lysis-lysogeny decision-making of P1 and highlighted the significance of spatial organization in the process of cell fate determination in a single-cell environment. Finally, our work provides new insights into different strategies acquired by viruses to interact with their bacterial hosts in different scenarios for their optimal survival. 
    more » « less
  2. Rappe, Michael S. (Ed.)
    ABSTRACT For the abundant marine Alphaproteobacterium Pelagibacter (SAR11), and other bacteria, phages are powerful forces of mortality. However, little is known about the most abundant Pelagiphages in nature, such as the widespread HTVC023P-type, which is currently represented by two cultured phages. Using viral metagenomic data sets and fluorescence-activated cell sorting, we recovered 80 complete, undescribed Podoviridae genomes that form 10 phylogenomically distinct clades (herein, named Clades I to X) related to the HTVC023P-type. These expanded the HTVC023P-type pan-genome by 15-fold and revealed 41 previously unknown auxiliary metabolic genes (AMGs) in this viral lineage. Numerous instances of partner-AMGs (colocated and involved in related functions) were observed, including partners in nucleotide metabolism, DNA hypermodification, and Curli biogenesis. The Type VIII secretion system (T8SS) responsible for Curli biogenesis was identified in nine genomes and expanded the repertoire of T8SS proteins reported thus far in viruses. Additionally, the identified T8SS gene cluster contained an iron-dependent regulator (FecR), as well as a histidine kinase and adenylate cyclase that can be implicated in T8SS function but are not within T8SS operons in bacteria. While T8SS are lacking in known Pelagibacter , they contribute to aggregation and biofilm formation in other bacteria. Phylogenetic reconstructions of partner-AMGs indicate derivation from cellular lineages with a more recent transfer between viral families. For example, homologs of all T8SS genes are present in syntenic regions of distant Myoviridae Pelagiphages, and they appear to have alphaproteobacterial origins with a later transfer between viral families. The results point to an unprecedented multipartner-AMG transfer between marine Myoviridae and Podoviridae. Together with the expansion of known metabolic functions, our studies provide new prospects for understanding the ecology and evolution of marine phages and their hosts. IMPORTANCE One of the most abundant and diverse marine bacterial groups is Pelagibacter . Phages have roles in shaping Pelagibacter ecology; however, several Pelagiphage lineages are represented by only a few genomes. This paucity of data from even the most widespread lineages has imposed limits on the understanding of the diversity of Pelagiphages and their impacts on hosts. Here, we report 80 complete genomes, assembled directly from environmental data, which are from undescribed Pelagiphages and render new insights into the manipulation of host metabolism during infection. Notably, the viruses have functionally related partner genes that appear to be transferred between distant viruses, including a suite that encode a secretion system which both brings a new functional capability to the host and is abundant in phages across the ocean. Together, these functions have important implications for phage evolution and for how Pelagiphage infection influences host biology in manners extending beyond canonical viral lysis and mortality. 
    more » « less
  3. McMahon, Katherine (Ed.)
    ABSTRACT Mobile genetic elements (MGEs) drive bacterial evolution, alter gene availability within microbial communities, and facilitate adaptation to ecological niches. In natural systems, bacteria simultaneously possess or encounter multiple MGEs, yet their combined influences on microbial communities are poorly understood. Here, we investigate interactions among MGEs in the marine bacterium Sulfitobacter pontiacus . Two related strains, CB-D and CB-A, each harbor a single prophage. These prophages share high sequence identity with one another and an integration site within the host genome, yet these strains exhibit differences in “spontaneous” prophage induction (SPI) and consequent fitness. To better understand mechanisms underlying variation in SPI between these lysogens, we closed their genomes, which revealed that in addition to harboring different prophage genotypes, CB-A lacks two of the four large, low-copy-number plasmids possessed by CB-D. To assess the relative roles of plasmid content versus prophage genotype on host physiology, a panel of derivative strains varying in MGE content were generated. Characterization of these derivatives revealed a robust link between plasmid content and SPI, regardless of prophage genotype. Strains possessing all four plasmids had undetectable phage in cell-free lysates, while strains lacking either one plasmid (pSpoCB-1) or a combination of two plasmids (pSpoCB-2 and pSpoCB-4) produced high (>10 5 PFU/mL) phage titers. Homologous plasmid sequences were identified in related bacteria, and plasmid and phage genes were found to be widespread in Tara Oceans metagenomic data sets. This suggests that plasmid-dependent stabilization of prophages may be commonplace throughout the oceans. IMPORTANCE The consequences of prophage induction on the physiology of microbial populations are varied and include enhanced biofilm formation, conferral of virulence, and increased opportunity for horizontal gene transfer. These traits lead to competitive advantages for lysogenized bacteria and influence bacterial lifestyles in a variety of niches. However, biological controls of “spontaneous” prophage induction, the initiation of phage replication and phage-mediated cell lysis without an overt stressor, are not well understood. In this study, we observed a novel interaction between plasmids and prophages in the marine bacterium Sulfitobacter pontiacus . We found that loss of one or more distinct plasmids—which we show carry genes ubiquitous in the world’s oceans—resulted in a marked increase in prophage induction within lysogenized strains. These results demonstrate cross talk between different mobile genetic elements and have implications for our understanding of the lysogenic-lytic switches of prophages found not only in marine environments, but throughout all ecosystems. 
    more » « less
  4. Abstract

    Phages—viruses that infect bacteria—have evolved over billions of years to overcome bacterial defenses. Temperate phage, upon infection, can “choose” between two pathways: lysis—in which the phage create multiple new phage particles, which are then liberated by cell lysis, and lysogeny—where the phage’s genetic material is added to the bacterial DNA and transmitted to the bacterial progeny. It was recently discovered that some phages can read information from the environment related to the density of bacteria or the number of nearby infection attempts. Such information may help phage make the right choice between the two pathways. Here, we develop a theoretical model that allows an infecting phage to change its strategy (i.e. the ratio of lysis to lysogeny) depending on an outside signal, and we find the optimal strategy that maximizes phage proliferation. While phages that exploit extra information naturally win in competition against phages with a fixed strategy, there may be costs to information, e.g. as the necessary extra genes may affect the growth rate of a lysogen or the burst size of new phage for the lysis pathway. Surprisingly, even when phages pay a large price for information, they can still maintain an advantage over phages that lack this information, indicating the high benefit of intelligence gathering in phage–bacteria warfare.

     
    more » « less
  5. Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to theCrassviralesorder. Despite identifying over 600Crassviralesgenomes computationally, only few have been successfully isolated. Continued efforts in isolation of moreCrassviralesgenomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting variousBacteroideshosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novelCrassviralesspecies infectingBacteroides cellulosilyticusWH2. These species,Kehishuvirussp. ‘tikkala’ strain Bc01,Kolpuevirussp. ‘frurule’ strain Bc03, and ‘Rudgehvirus jaberico’ strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully culturedCrassviralesspecies and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present threeCrassviralesspecies as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome.

     
    more » « less