skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Phylogeography of the widespread creek chub Semotilus atromaculatus (Cypriniformes: Leuciscidae)

The extent and nature of genetic differentiation inSemotilus atromaculatus, one of the most abundant and widespread leuciscids in North America, were evaluated based on mitochondrial (mt) and nuclear DNA sequence variation. Phylogenetic relationships were first inferred based on a fragment of the cytochrome b (cytb) region and the nuclear introns7gene forS. atromaculatusand all other congeners as well as representative species from all other genera in the creek chub–plagopterin clade. The phylogeography of major haplogroups ofS. atromaculatuswas also assessed according to variation in a fragment of the mitochondrialcytbregion from 567 individuals across its range. All analyses identifiedS. thoreauianus,S. lumbeeandS. corporalisas reciprocally monophyletic groups. Analyses of nuclear sequence variation resolvedS. atromaculatusas a single clade, whereS. thoreauianusandS. lumbeewere recovered as the sister group toS. atromaculatus, andS. corporaliswas resolved as sister to all other species in the genus. Analyses of mtDNA sequence variation recoveredS. atromaculatusas three well supported and differentiated monophyletic groups, with a widespread genetically homogeneous lineage extending across most of the current range of the species; a more geographically restricted and geographically structured lineage in the southern Appalachians, sister group toS. lumbee; and a geographically restricted lineage was identified from two Gulf Slope basins. Evidence of complex mito‐nuclear discordance and phylogeographic differentiation withinS. atromaculatusillustrates that further analysis of widespread species is warranted to understand North American freshwater fish diversity and distributions.

 
more » « less
NSF-PAR ID:
10454425
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Fish Biology
Volume:
93
Issue:
5
ISSN:
0022-1112
Page Range / eLocation ID:
p. 778-791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a phylogenetic analysis of spiders using a dataset of 932 spider species, representing 115 families (only the family Synaphridae is unrepresented), 700 known genera, and additional representatives of 26 unidentified or undescribed genera. Eleven genera of the orders Amblypygi, Palpigradi, Schizomida and Uropygi are included as outgroups. The dataset includes six markers from the mitochondrial (12S, 16S,COI) and nuclear (histone H3, 18S, 28S) genomes, and was analysed by multiple methods, including constrained analyses using a highly supported backbone tree from transcriptomic data. We recover most of the higher‐level structure of the spider tree with good support, including Mesothelae, Opisthothelae, Mygalomorphae and Araneomorphae. Several of our analyses recover Hypochilidae and Filistatidae as sister groups, as suggested by previous transcriptomic analyses. The Synspermiata are robustly supported, and the families Trogloraptoridae and Caponiidae are found as sister to the Dysderoidea. Our results support the Lost Tracheae clade, including Pholcidae, Tetrablemmidae, Diguetidae, Plectreuridae and the family Pacullidae (restored status) separate from Tetrablemmidae. The Scytodoidea include Ochyroceratidae along with Sicariidae, Scytodidae, Drymusidae and Periegopidae; our results are inconclusive about the separation of these last two families. We did not recover monophyletic Austrochiloidea and Leptonetidae, but our data suggest that both groups are more closely related to the Cylindrical Gland Spigot clade rather than to Synspermiata. Palpimanoidea is not recovered by our analyses, but also not strongly contradicted. We find support for Entelegynae and Oecobioidea (Oecobiidae plus Hersiliidae), and ambiguous placement of cribellate orb‐weavers, compatible with their non‐monophyly. Nicodamoidea (Nicodamidae plus Megadictynidae) and Araneoidea composition and relationships are consistent with recent analyses. We did not obtain resolution for the titanoecoids (Titanoecidae and Phyxelididae), but the Retrolateral Tibial Apophysis clade is well supported. Penestomidae, and probably Homalonychidae, are part of Zodarioidea, although the latter family was set apart by recent transcriptomic analyses. Our data support a large group that we call the marronoid clade (including the families Amaurobiidae, Desidae, Dictynidae, Hahniidae, Stiphidiidae, Agelenidae and Toxopidae). The circumscription of most marronoid families is redefined here. Amaurobiidae include the Amaurobiinae and provisionally Macrobuninae. We transfer Malenellinae (Malenella, from Anyphaenidae), Chummidae (Chumma) (new syn.) and Tasmarubriinae (Tasmarubrius,TasmabrochusandTeeatta, from Amphinectidae) to Macrobuninae. Cybaeidae are redefined to includeCalymmaria,Cryphoeca,EthobuellaandWillisius(transferred from Hahniidae), andBlabommaandYorima(transferred from Dictynidae). Cycloctenidae are redefined to includeOrepukia(transferred from Agelenidae) andPakehaandParavoca(transferred from Amaurobiidae). Desidae are redefined to include five subfamilies: Amphinectinae, withAmphinecta,Mamoea,Maniho,ParamamoeaandRangitata(transferred from Amphinectidae); Ischaleinae, withBakalaandManjala(transferred from Amaurobiidae) andIschalea(transferred from Stiphidiidae); Metaltellinae, withAustmusia,Buyina,Calacadia,Cunnawarra,Jalkaraburra,Keera,Magua,Metaltella,PenaoolaandQuemusia; Porteriinae (new rank), withBaiami,Cambridgea,CorasoidesandNanocambridgea(transferred from Stiphidiidae); and Desinae, withDesis, and provisionallyPoaka(transferred from Amaurobiidae) andBarahna(transferred from Stiphidiidae).Argyronetais transferred from Cybaeidae to Dictynidae.Cicurinais transferred from Dictynidae to Hahniidae. The generaNeoramia(from Agelenidae) andAorangia,MarplesiaandNeolana(from Amphinectidae) are transferred to Stiphidiidae. The family Toxopidae (restored status) includes two subfamilies: Myroinae, withGasparia,Gohia,Hulua,Neomyro,Myro,OmmatauxesisandOtagoa(transferred from Desidae); and Toxopinae, withMidgeeandJamara, formerly Midgeeinae,new syn.(transferred from Amaurobiidae) andHapona,Laestrygones,Lamina,ToxopsandToxopsoides(transferred from Desidae). We obtain a monophyletic Oval Calamistrum clade and Dionycha; Sparassidae, however, are not dionychans, but probably the sister group of those two clades. The composition of the Oval Calamistrum clade is confirmed (including Zoropsidae, Udubidae, Ctenidae, Oxyopidae, Senoculidae, Pisauridae, Trechaleidae, Lycosidae, Psechridae and Thomisidae), affirming previous findings on the uncertain relationships of the “ctenids”AncylometesandCupiennius, although a core group of Ctenidae are well supported. Our data were ambiguous as to the monophyly of Oxyopidae. In Dionycha, we found a first split of core Prodidomidae, excluding the Australian Molycriinae, which fall distantly from core prodidomids, among gnaphosoids. The rest of the dionychans form two main groups, Dionycha part A and part B. The former includes much of the Oblique Median Tapetum clade (Trochanteriidae, Gnaphosidae, Gallieniellidae, Phrurolithidae, Trachelidae, Gnaphosidae, Ammoxenidae, Lamponidae and the Molycriinae), and also Anyphaenidae and Clubionidae.Orthobulais transferred from Phrurolithidae to Trachelidae. Our data did not allow for complete resolution for the gnaphosoid families. Dionycha part B includes the families Salticidae, Eutichuridae, Miturgidae, Philodromidae, Viridasiidae, Selenopidae, Corinnidae and Xenoctenidae(new fam., includingXenoctenus,ParavulsorandOdo, transferred from Miturgidae, as well asIncasoctenusfrom Ctenidae). We confirm the inclusion ofZora(formerly Zoridae) within Miturgidae.

     
    more » « less
  2. Abstract

    Fungus‐farming ants (Hymenoptera: Formicidae) have become model systems for exploring questions regarding the evolution of symbiosis. However, robust phylogenetic studies of both the ant agriculturalists and their fungal cultivars are necessary for addressing whether or not observed ant–fungus associations are the result of coevolution and, if so, whether that coevolution has been strict or diffuse. Here we focus on the evolutionary relationships of the species within the ant genusMyrmicocryptaand of their fungal cultivars. The fungus‐farming ant genusMyrmicocryptawas created by Fr. Smith in 1860 based on a single alate queen. Since then, 31 species and subspecies have been described. Until now, the genus has not received any taxonomic treatment and the relationships of the species within the genus have not been tested. Our molecular analyses, using ∼40 putative species and six protein‐coding (nuclear and mitochondrial) gene fragments, recoverMyrmicocryptaas monophyletic and as the sister group of the genusMycocepurusForel. The speciesM. tuberculataWeber is recovered as the sister to the rest ofMyrmicocrypta. The time‐calibrated phylogeny recovers the age of stem groupMyrmicocryptaplus its sister group as 45 Ma, whereas the inferred age for the crown groupMyrmicocryptais recovered as 27 Ma. Ancestral character‐state analyses suggest that the ancestor ofMyrmicocryptahad scale‐like or squamate hairs and that, although such hairs were once considered diagnostic for the genus, the alternative state of erect simple hairs has evolved at least seven independent times. Ancestral‐state analyses of observed fungal cultivar associations suggest that the most recent common ancestor ofMyrmicocryptacultivated clade 2 fungal species and that switches to clade 1 fungi have occurred at least five times. It is our hope that these results will encourage additional species‐level phylogenies of fungus‐farming ants and their fungal cultivars, which are necessary for understanding the evolutionary processes that gave rise to agriculture in ants and that produced the current diversity of mutualistic ant–fungus interactions.

     
    more » « less
  3. Abstract

    Naturally occurring population variation in reproductive mode presents an opportunity for researchers to test hypotheses regarding the evolution of sex. Asexual reproduction frequently assumes a geographical pattern, in which parthenogenesis‐dominated populations are more broadly dispersed than their sexual conspecifics. We evaluate the geographical distribution of genomic signatures associated with parthenogenesis using nuclear and mitochondrialDNAsequence data from two Japanese harvestman sister taxa,Leiobunum manubriatumandLeiobunum globosum. Asexual reproduction is putatively facultative in these species, and female‐biased localities are common in habitat margins. Past karyotypic and current cytometric work indicatesL. globosumis entirely tetraploid, whileL. manubriatummay be either diploid or tetraploid. We estimated species phylogeny, genetic differentiation, diversity, and mitonuclear discordance in females collected across the species range in order to identify range expansion toward marginal habitat, potential for hybrid origin, and persistence of asexual lineages. Our results point to northward expansion of a tetraploid ancestor ofL. manubriatumandL. globosum, coupled with support for greater male gene flow in southernL. manubriatumlocalities. Specimens from localities in the Tohoku and Hokkaido regions were indistinct, particularly those ofL. globosum, potentially due to little mitochondrial differentiation or haplotypic variation. AlthoughL. manubriatumoverlaps withL. globosumacross its entire range,L. globosumwas reconstructed as monophyletic with strong support using mtDNA, and marginal support with nuclear loci. Ultimately, we find evidence for continued sexual reproduction in both species and describe opportunities to clarify the rate and mechanism of parthenogenesis.

     
    more » « less
  4. Hylexetasteswoodcreepers are endemic to theterra firmeforests of the Amazon basin. Currently, most taxonomic sources recognize two species ofHylexetastes(H. perrotiiandH. stresemanni), each divided into three subspecies. Some authors maintain that theH. perrotiisubspecies should be elevated to full species status. In particular,Hylexetastes perrotii brigidaiis endemic to the eastern Amazon, the second Amazonian area of endemism (Xingu) most affected by deforestation and habitat degradation. Consequently, the taxonomic status ofH. p. brigidaiis of particular concern for conservation. Thus far, only morphological characters have been evaluated for the taxonomic delimitation of species and subspecies ofHylexetastes. We present a molecular phylogenetic analysis of all subspecies to help delimitHylexetastesinterspecific limits. Fragments of two mitochondrial (CytbandND2) and three nuclear genes (FGB5, G3PDHandMUSK) from 57Hylexetastesspecimens were sequenced. An ecological niche model was estimated to describe more accurately the potential distributions of taxa and to evaluate their vulnerability to ongoing deforestation. Phylogenetic analyses support the paraphyly of the polytypicH. perrotiias currently delimited and the elevation ofHylexetastes perrotii uniformisto full species rank, as well as the presence of three evolutionary significant units (ESUs) within this newly delimited species, including one grouping allH. p. brigidaispecimens. Alternatively, under lineage‐based species concepts, our results support at least five evolutionary species inHylexetastes:H. stresemanni,H. undulatus,H. perrotii,H. uniformisandH. brigidai. Each of these taxa andESUs are distributed in different interfluvial areas of the Amazon basin, which have different degrees of disturbance. Because they occupy the most heavily impacted region among allHylexetastesESUs, regular assessments of the conservation statuses ofH. p. brigidaiand bothH. uniformisESUs are paramount.

     
    more » « less
  5. Abstract Aim

    The Lesser Sunda Islands are situated between the Sunda and Sahul Shelves, with a linear arrangement that has functioned as a two‐way filter for taxa dispersing between the Asian and Australo‐Papuan biogeographical realms. Distributional patterns of many terrestrial vertebrates suggest a stepping‐stone model of island colonization. Here we investigate the timing and sequence of island colonization in Asian‐origin fanged frogs from the volcanic Sunda Arc islands with the goal of testing the stepping‐stone model of island colonization.

    Location

    The Indonesian islands of Java, Lombok, Sumbawa, Flores and Lembata.

    Taxon

    Limnonectes dammermaniandL. kadarsani(Family: Dicroglossidae)

    Methods

    MitochondrialDNAwas sequenced from 153 frogs to identify major lineages and to select samples for an exon‐capture experiment. We designed probes to capture sequence data from 974 exonic loci (1,235,981 bp) from 48 frogs including the outgroup species,L. microdiscus. The resulting data were analysed using phylogenetic, population genetic and biogeographical model testing methods.

    Results

    The mtDNAphylogeny findsL. kadarsaniparaphyletic with respect toL. dammermani, with a pectinate topology consistent with the stepping‐stone model. Phylogenomic analyses of 974 exons recovered the two species as monophyletic sister taxa that diverged ~7.6 Ma with no detectable contemporary gene flow, suggesting introgression of theL. dammermanimitochondrion intoL. kadarsanion Lombok resulting from an isolated ancient hybridization event ~4 Ma. WithinL. kadarsani,the Lombok lineage diverged first while the Sumbawa and Lembata lineages are nested within a Flores assemblage composed of two parapatrically distributed lineages meeting in central Flores. Biogeographical model comparison found strict stepping‐stone dispersal to be less likely than models involving leap‐frog dispersal events.

    Main conclusions

    These results suggest that the currently accepted stepping‐stone model of island colonization might not best explain the current patterns of diversity in the archipelago. The high degree of genetic structure, large divergence times, and absent or low levels of migration between lineages suggests thatL. kadarsanirepresents five distinct species.

     
    more » « less