Abstract There is a growing focus on the role of DNA methylation in the ability of marine invertebrates to rapidly respond to changing environmental factors and anthropogenic impacts. However, genome‐wide DNA methylation studies in nonmodel organisms are currently hampered by a limited understanding of methodological biases. Here, we compare three methods for quantifying DNA methylation at single base‐pair resolution—whole genome bisulfite sequencing (WGBS), reduced representation bisulfite sequencing (RRBS), and methyl‐CpG binding domain bisulfite sequencing (MBDBS)—using multiple individuals from two reef‐building coral species with contrasting environmental sensitivity. All methods reveal substantially greater methylation inMontipora capitata(11.4%) than the more sensitivePocillopora acuta(2.9%). The majority of CpG methylation in both species occurs in gene bodies and flanking regions. In both species, MBDBS has the greatest capacity for detecting CpGs in coding regions at our sequencing depth, but MBDBS may be influenced by intrasample methylation heterogeneity. RRBS yields robust information for specific loci albeit without enrichment of any particular genome feature and with significantly reduced genome coverage. Relative genome size strongly influences the number and location of CpGs detected by each method when sequencing depth is limited, illuminating nuances in cross‐species comparisons. As genome‐wide methylation differences, supported by data across bisulfite sequencing methods, may contribute to environmental sensitivity phenotypes in critical marine invertebrate taxa, these data provide a genomic resource for investigating the functional role of DNA methylation in environmental tolerance.
more »
« less
Benchmarking DNA methylation assays in a reef‐building coral
Abstract Interrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics. We compare whole genome bisulphite sequencing (WGBS) with methylated CpG binding domain sequencing (MBD‐seq), and a modified version of MethylRAD we term methylation‐dependent restriction site‐associated DNA sequencing (mdRAD). We evaluate these three assays in measuring variation in methylation across the genome, between genotypes, and between polyp types in the reef‐building coralAcropora millepora. We find that all three assays measure absolute methylation levels similarly for gene bodies (gbM), as well as exons and 1 Kb windows with a minimum Pearson correlation 0.66. Differential gbM estimates were less correlated, but still concurrent across assays. We conclude that MBD‐seq and mdRAD are reliable and cost‐effective alternatives to WGBS. The considerably lower sequencing effort required for mdRAD to produce comparable methylation estimates makes it particularly useful for ecological epigenetics.
more »
« less
- Award ID(s):
- 1755277
- PAR ID:
- 10454430
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology Resources
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1755-098X
- Format(s):
- Medium: X Size: p. 464-477
- Size(s):
- p. 464-477
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)—which profiles ∼4 million CpG sites—for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations—the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia—and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.more » « less
-
Sproul, Duncan (Ed.)Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)—which profiles ~4 million CpG sites—for miniaturization, flexibility, and multispecies use. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.more » « less
-
Abstract In heterozygous genomes, allele-specific measurements can reveal biologically significant differences in DNA methylation between homologous alleles associated with local changes in genetic sequence. Current approaches for detecting such events from whole-genome bisulfite sequencing (WGBS) data perform statistically independent marginal analysis at individual cytosine-phosphate-guanine (CpG) sites, thus ignoring correlations in the methylation state, or carry-out a joint statistical analysis of methylation patterns at four CpG sites producing unreliable statistical evidence. Here, we employ the one-dimensional Ising model of statistical physics and develop a method for detecting allele-specific methylation (ASM) events within segments of DNA containing clusters of linked single-nucleotide polymorphisms (SNPs), called haplotypes. Comparisons with existing approaches using simulated and real WGBS data show that our method provides an improved fit to data, especially when considering large haplotypes. Importantly, the method employs robust hypothesis testing for detecting statistically significant imbalances in mean methylation level and methylation entropy, as well as for identifying haplotypes for which the genetic variant carries significant information about the methylation state. As such, our ASM analysis approach can potentially lead to biological discoveries with important implications for the genetics of complex human diseases.more » « less
-
Summary DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), thede novoArabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself.Here, we conducted yeast two‐hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F‐BOX KELCH 1 (CFK1), as a novel DRM2‐interacting partner and targets DRM2 for degradation via the ubiquitin‐26S proteasome pathway inArabidopsis thaliana. We also performed whole genome bisulfite sequencing (BS‐seq) to determine the biological significance of CFK1‐mediated DRM2 degradation.Loss‐of‐functionCFK1leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome‐wide CHH hypomethylation and transcriptional de‐repression at specific DRM2 target loci.This study uncovered a distinct mechanism regulatingde novoDNA methyltransferase by CFK1 to control DNA methylation level.more » « less
An official website of the United States government
