Abstract Despite the importance of insect pollination to produce marketable fruits, insect pollination management is limited by insufficient knowledge about key crop pollinator species. This lack of knowledge is due in part to (1) the extensive labour involved in collecting direct observations of pollen transport, (2) the variability of insect assemblages over space and time and (3) the possibility that pollinators may need access to wild plants as well as crop floral resources.We address these problems using strawberry in the United Kingdom as a case study. First, we compare two proxies for estimating pollinator importance: flower visits and pollen transport. Pollen‐transport data might provide a closer approximation of pollination service, but visitation data are less time‐consuming to collect. Second, we identify insectparametersthat are associated with high importance as pollinators, estimated using each of the proxies above. Third, we estimated insects' use of wild plants as well as the strawberry crop.Overall, pollinator importances estimated based on easier‐to‐collect visitation data were strongly correlated with importances estimated based on pollen loads. Both frameworks suggest that bees (ApisandBombus) and hoverflies (Eristalis) are likely to be key pollinators of strawberries, although visitation data underestimate the importance of bees.Moving beyond species identities, abundant, relatively specialised insects with long active periods are likely to provide more pollination services.Most insects visiting strawberry plants also carried pollen from wild plants, suggesting that pollinators need diverse floral resources.Identifying essential pollinators or pollinator parameters based on visitation data will reach the same general conclusions as those using pollen transport data, at least in monoculture crop systems. Managers may be able to enhance pollination service by preserving habitats surrounding crop fields to complement pollinators' diets and provide habitats for diverse life stages of wild pollinators.
more »
« less
How do insects choose flowers? A review of multi‐attribute flower choice and decoy effects in flower‐visiting insects
Abstract Understanding why animals (including humans) choose one thing over another is one of the key questions underlying the fields of behavioural ecology, behavioural economics and psychology. Most traditional studies of food choice in animals focus on simple, single‐attribute decision tasks. However, animals in the wild are often faced with multi‐attribute choice tasks where options in the choice set vary across multiple dimensions. Multi‐attribute decision‐making is particularly relevant for flower‐visiting insects faced with deciding between flowers that may differ in reward attributes such as sugar concentration, nectar volume and pollen composition as well as non‐rewarding attributes such as colour, symmetry and odour. How do flower‐visiting insects deal with complex multi‐attribute decision tasks?Here we review and synthesise research on the decision strategies used by flower‐visiting insects when making multi‐attribute decisions. In particular, we review how different types of foraging frameworks (classic optimal foraging theory, nutritional ecology, heuristics) conceptualise multi‐attribute choice and we discuss how phenomena such as innate preferences, flower constancy and context dependence influence our understanding of flower choice.We find that multi‐attribute decision‐making is a complex process that can be influenced by innate preferences, flower constancy, the composition of the choice set and economic reward value. We argue that to understand and predict flower choice in flower‐visiting insects, we need to move beyond simplified choice sets towards a view of multi‐attribute choice which integrates the role of non‐rewarding attributes and which includes flower constancy, innate preferences and context dependence. We further caution that behavioural experiments need to consider the possibility of context dependence in the design and interpretation of preference experiments.We conclude with a discussion of outstanding questions for future research. We also present a conceptual framework that incorporates the multiple dimensions of choice behaviour.
more »
« less
- Award ID(s):
- 1846764
- PAR ID:
- 10454462
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 89
- Issue:
- 12
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- p. 2750-2762
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pollination is essential to fruit production. How plant diversity and blooming events in and around orchards affect the pollinator community and the plant‐flower‐visitor network in neotropical systems remains largely unknown.We surveyed the flower visitors in deciduous fruit trees and alternative blooming resources (other crops, hedgerows and weeds) in Colombia across 6 orchards over 12 months. We evaluated whether plant species richness and blooming cover influenced abundance and richness of flower visitors, as well as network‐level connectance and specialization. We also assessed the role of alternative blooming resources for the flower visitors of deciduous fruit trees.Overall, we found 66 taxa of flower visitors, 35 of which visited deciduous fruit trees. There was a greater abundance of flower visitors when there was higher richness of weedy species and greater blooming cover of deciduous fruit trees. Networks were less connected when there was lower crop and weedy species richness. Finally, flower visitor abundance and specialization increased when there were multiple hedgerow species in bloom with a high blooming cover.We highlight the importance of maintaining alternative blooming resources in and around the orchards to support deciduous fruit tree pollinators and diversity in the plant flower‐visitor network.more » « less
-
Abstract Characterising the frequency and timing of biological processes such as locomotion, eclosion or foraging, is often needed to get a complete picture of a species' ecology. Automated trackers are an invaluable tool for high‐throughput collection of activity data and have become more accurate and efficient with advances in computer vision and deep learning. However, tracking activity of small and fast flying animals remains a hurdle, especially in a field setting with variable light conditions. Commercial activity monitors can be expensive, closed source and generally limited to laboratory settings.Here, we present a portable locomotion activity monitor (pLAM), a mobile activity detector to quantify small animal activity. Our setup uses inexpensive components, builds upon open‐source motion tracking software, and is easy to assemble and use in the field. It runs off‐grid, supports low‐light tracking with infrared lights and can implement arbitrary light cycle colours and brightnesses with programmable LEDs. We provide a user‐friendly guide to assembling pLAM hardware, accessing its pre‐configured software and guidelines for using it in other systems.We benchmarked pLAM for insects under various laboratory and field conditions, then compared results to a commercial activity detector. They offer broadly similar activity measures, but our setup captures flight and bouts of motion that are often missed by beam breaking activity detection.pLAM can automate laboratory and field monitoring of activity and timing in a wide range of biological processes, including circadian rhythm, eclosion and diapause timing, pollination and flower foraging, or pest feeding activity. This low cost and easy setup allows high‐throughput animal behaviour studies for basic and applied ecology and evolution research.more » « less
-
While most models of decision-making assume that individuals assign options absolute values, animals often assess options comparatively, violating principles of economic rationality. Such ‘irrational’ preferences are especially common when two rewards vary along multiple dimensions of quality and a third, ‘decoy’ option is available. Bumblebees are models of decision-making, yet whether they are subject to decoy effects is unknown. We addressed this question using bumblebees (Bombus impatiens) choosing between flowers that varied in their nectar concentration and reward rate. We first gave bees a choice between two flower types, one higher in concentration and the other higher in reward rate. Bees were then given a choice between these flowers and either a ‘concentration’ or ‘rate’ decoy, designed to be asymmetrically dominated on each axis. The rate decoy increased bees’ preference in the expected direction, while the concentration decoy did not. In a second experiment, we manipulated choices along two single reward dimensions to test whether this discrepancy was explained by differences in how concentration versus reward rate were evaluated. We found that low-concentration decoys increased bees’ preference for the medium option as predicted, whereas low-rate decoys had no effect. Our results suggest that both low- and high-value flowers can influence pollinator preferences in ways previously unconsidered.more » « less
-
Summary Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.more » « less
An official website of the United States government
