skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conserved bacterial genomes from two geographically isolated peritidal stromatolite formations shed light on potential functional guilds
Summary Stromatolites are complex microbial mats that form lithified layers. Fossilized stromatolites are the oldest evidence of cellular life on Earth, dating back over 3.4 billion years. Modern stromatolites are relatively rare but may provide clues about the function and evolution of their ancient counterparts. In this study, we focus on peritidal stromatolites occurring at Cape Recife and Schoenmakerskop on the southeastern South African coastline, the former being morphologically and structurally similar to fossilized phosphatic stromatolites formations. Using assembled shotgun metagenomic analysis, we obtained 183 genomic bins, of which the most dominant taxa were from the Cyanobacteria phylum. We identified functional gene sets in genomic bins conserved across two geographically isolated stromatolite formations, which included relatively high copy numbers of genes involved in the reduction of nitrates and phosphatic compounds. Additionally, we found little evidence of Archaeal species in these stromatolites, suggesting that they may not play an important role in peritidal stromatolite formations, as proposed for hypersaline formations.  more » « less
Award ID(s):
1845890
PAR ID:
10454485
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology Reports
Volume:
13
Issue:
2
ISSN:
1758-2229
Format(s):
Medium: X Size: p. 126-137
Size(s):
p. 126-137
Sponsoring Org:
National Science Foundation
More Like this
  1. The Nama Group (Kalahari Craton) is an archetypal stratigraphic record of the Ediacaran–Cambrian transition. The upper Schwarzrand Subgroup preserves key biostratigraphic markers of this interval, including erniettomorphs, cloudinomorphs, and trace fossils, yet has a complex stratigraphic architecture due to deposition in a foreland basin. Here, we describe the stratigraphy of the upper Schwarzrand Subgroup of the Nama Basin, and collate sedimentologic, geochronologic, carbon isotope chemostratigraphic, and biostratigraphic data. We argue that strata previously identified as the Nomtsas Formation in the Witputs Subbasin are lithostratigraphically and tectonostratigraphically distinct from those in the type area (Farm Nomtsas) in the Zaris Subbasin. Therefore, we introduce the Swartkloofberg Formation as a new name for the terminal Schwarzrand Subgroup in the Witputs Subbasin. While carbonates of the underlying Urusis Formation were deposited within shallow marine environments, the Swartkloofberg Formation records a transition to dominantly siliciclastic deposition, mostly below fair-weather wave base, and with extensive evidence of slope instability. High-relief stromatolite reefs formed diachronously at different localities within both the Urusis and Swartkloofberg formations due to laterally variable accommodation space within the foreland basin. Strata of the Swartkloofberg Formation are interpreted as flysch deposits within an underfilled basin. We propose that the distinct deltaic peritidal and shoreface strata that—in some localities—were previously assigned to the upper Nomtsas Formation, are placed within the unconformably overlying molasse deposits of the Fish River Subgroup. These strata contain the stratigraphically lowest identified occurrences ofTreptichnus pedumwithin the Nama Group, and thus the base of the Cambrian Period. This stratigraphic revision solves several longstanding issues with regional correlation and revises the position of the Ediacaran–Cambrian boundary in the Witputs Subbasin. Accordingly, the Swartkloofberg Formation in the Witputs Subbasin (538.5–<537.6 Ma) is Ediacaran in age, as defined by biostratigraphy, supporting recent interpretations that the base of the Cambrian Period may be younger than 537.6 Ma. With increasingly refined age-stratigraphic models for the Nama Group, the upper Schwarzrand Subgroup provides a high-resolution record of the evolution of increasingly complex benthic invertebrate behaviors in the terminal Ediacaran lead-up to the classical Cambrian radiation of biomineralized invertebrate phyla. 
    more » « less
  2. We interpret a newly discovered laminated limestone associated with Middle Proterozoic rocks in the Redrock and Brushy Mountain quadrangles of southwestern New Mexico as representing stromatolites, possibly Conophyton. This locality is geographically aligned with other outcrops of ~1.2 Ga stromatolites documented in the southwest U.S., such as those in the Bass Formation (Grand Canyon, AZ), the Mescal Limestone (Salt River Canyon, AZ), the Castner Marble (Franklin Mountains, TX), and the Allamoore Formation (Van Horn, TX). These stromatolites have similar morphologies to those found in Texas and represent the first instance of Proterozoic fossils identified within the state of New Mexico. The stromatolite-bearing unit, termed here the Ash Creek Limestone, is exposed along with a marble unit surrounded by the ~1225 Ma Redrock Granite (Williams, 2015). Mapping at 1:6,000 scale shows that the carbonates are also associated with a unit consisting of serpentinite interbedded with talc (forming a rock informally referred to as ricolite), meaning they share a similar depositional setting. The carbonates are only found surrounded by granite, whereas ricolite outcrops are typically in contact with a metabasalt. The metabasalt yielded a U-Pb zircon weighted mean 207Pb/206Pb age of 1229 ± 12 Ma (n= 35; MSWD= 0.8). This represents the first direct dating of ~1.2 Ga mafic volcanism in the area, and these racks are similar in age to anorthosite dated at 1223 ± 6 Ma and 1231 ± 4 Ma (Ramo et al., 2003). Together, the ~1.2 Ga bimodal magmatism and shallow marine limestone units indicate that the tectonic setting of southwest Laurentia at this time involved a NW-SE-trending Mesoproterozoic seaway that formed as a result of coeval regional extension during the early stages of the Grenville orogeny. 
    more » « less
  3. Abstract Bayesian total-evidence approaches under the fossilized birth-death model enable biologists to combine fossil and extant data while accounting for uncertainty in the ages of fossil specimens, in an integrative phylogenetic analysis. Fossil age uncertainty is a key feature of the fossil record as many empirical data sets may contain a mix of precisely dated and poorly dated fossil specimens or deposits. In this study, we explore whether reliable age estimates for fossil specimens can be obtained from Bayesian total-evidence phylogenetic analyses under the fossilized birth-death model. Through simulations based on the example of the Baltic amber deposit, we show that estimates of fossil ages obtained through such an analysis are accurate, particularly when the proportion of poorly dated specimens remains low and the majority of fossil specimens have precise dates. We confirm our results using an empirical data set of living and fossil penguins by artificially increasing the age uncertainty around some fossil specimens and showing that the resulting age estimates overlap with the recorded age ranges. Our results are applicable to many empirical data sets where classical methods of establishing fossil ages have failed, such as the Baltic amber and the Gobi Desert deposits. [Bayesian phylogenetic inference; fossil age estimates; fossilized birth-death; Lagerstätte; total-evidence.] 
    more » « less
  4. Abstract The extraordinary window of phosphatized and phosphatic small shelly fossils (SSF) during the early and middle Cambrian is an important testament to the radiation of biomineralizing metazoans. WhileSSFare well known from most Cambrian palaeocontinents during this time interval, western Laurentia has relatively fewSSFfaunas. Here we describe a diverseSSFfauna from the early Cambrian (Stages 3–4) Mural Formation at three localities in Alberta and British Columbia, Canada, complemented by carbon isotope measurements to aid in a potential future bio‐chemostratigraphic framework. The fauna expands the recordedSSFassemblage diversity in western Laurentia and includes several brachiopods, four bradoriids, three chancelloriids, two hyoliths, a tommotiid and a helcionellid mollusc as well as echinoderm ossicles and specimens ofMicrodictyon,VolborthellaandHyolithellus. New taxa include the tommotiid genusCanadiellagen. nov., the new bradoriid speciesHipponicharion perforatasp. nov. andPseudobeyrichona tauratasp. nov. Compared with contemporaneous faunas from western Laurentia, the fauna is relatively diverse, particularly in taxa with originally phosphatic shells, which appear to be associated with archaeocyathid build‐ups. This suggests that the generally low faunal diversity in western Laurentia may be at least partly a consequence of poor sampling of suitable archaeocyathan reef environments. In addition, the tommotiidCanadiella filigranaappears to be of biostratigraphical significance in Cambrian Stage 3 strata of western Laurentia, and the unexpected high diversity of bradoriid arthropods in the fauna also suggests that this group may prove useful for biostratigraphical resolution in the region. 
    more » « less
  5. Abstract MotivationMetagenomic binning aims to retrieve microbial genomes directly from ecosystems by clustering metagenomic contigs assembled from short reads into draft genomic bins. Traditional shotgun-based binning methods depend on the contigs’ composition and abundance profiles and are impaired by the paucity of enough samples to construct reliable co-abundance profiles. When applied to a single sample, shotgun-based binning methods struggle to distinguish closely related species only using composition information. As an alternative binning approach, Hi-C-based binning employs metagenomic Hi-C technique to measure the proximity contacts between metagenomic fragments. However, spurious inter-species Hi-C contacts inevitably generated by incorrect ligations of DNA fragments between species link the contigs from varying genomes, weakening the purity of final draft genomic bins. Therefore, it is imperative to develop a binning pipeline to overcome the shortcomings of both types of binning methods on a single sample. ResultsWe develop HiFine, a novel binning pipeline to refine the binning results of metagenomic contigs by integrating both Hi-C-based and shotgun-based binning tools. HiFine designs a strategy of fragmentation for the original bin sets derived from the Hi-C-based and shotgun-based binning methods, which considerably increases the purity of initial bins, followed by merging fragmented bins and recruiting unbinned contigs. We demonstrate that HiFine significantly improves the existing binning results of both types of binning methods and achieves better performance in constructing species genomes on publicly available datasets. To the best of our knowledge, HiFine is the first pipeline to integrate different types of tools for the binning of metagenomic contigs. Availability and implementationHiFine is available at https://github.com/dyxstat/HiFine. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less