Perovskite light‐emitting diodes (PeLEDs) are advancing because of their superior external quantum efficiencies (EQEs) and color purity. Still, additional work is needed for blue PeLEDs to achieve the same benchmarks as the other visible colors. This study demonstrates an extremely efficient blue PeLED with a 488 nm peak emission, a maximum luminance of 8600 cd m−2, and a maximum EQE of 12.2% by incorporating the double‐sided ethane‐1,2‐diammonium bromide (EDBr2) ligand salt along with the long‐chain ligand methylphenylammonium chloride (MeCl). The EDBr2successfully improves the interaction between 2D perovskite layers by reducing the weak van der Waals interaction and creating a Dion–Jacobson (DJ) structure. Whereas the pristine sample (without EDBr2) is inhibited by small stacking number (
While there has been extensive investigation into modulating quasi‐2D perovskite compositions in light‐emitting diodes (LEDs) for promoting their electroluminescence, very few reports have studied approaches involving enhancement of the energy transfer between quasi‐2D perovskite layers of the film, which plays very important role for achieving high‐performance perovskite LEDs (PeLEDs). In this work, a bifunctional ligand of 4‐(2‐aminoethyl)benzoic acid (ABA) cation is strategically introduced into the perovskite to diminish the weak van der Waals gap between individual perovskite layers for promoting coupled quasi‐2D perovskite layers. In particular, the strengthened interaction between coupled quasi‐2D perovskite layers favors an efficient energy transfer in the perovskite films. The introduced ABA can also simultaneously passivate the perovskite defects by reducing metallic Pb for less nonradiative recombination loss. Benefiting from the advanced properties of ABA incorporated perovskites, highly efficient blue PeLEDs with external quantum efficiency of 10.11% and a very long operational stability of 81.3 min, among the best performing blue quasi‐2D PeLEDs, are achieved. Consequently, this work contributes an effective approach for high‐performance and stable blue PeLEDs toward practical applications.
more » « less- PAR ID:
- 10454496
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract n ) 2D phases with nonradiative recombination regions that diminish the PeLED performance, adding EDBr2successfully enables better energy transfer from smalln phases to largern phases. As evidenced by photoluminescence (PL), scanning electron microscopy (SEM), and atomic force microscopy (AFM) characterization, EDBr2improves the morphology by reduction of pinholes and passivation of defects, subsequently improving the efficiencies and operational lifetimes of quasi‐2D blue PeLEDs. -
Abstract Layered halide perovskites have garnered significant interest due to their exceptional optoelectronic properties and great promises in light‐emitting applications. Achieving high‐performance perovskite light‐emitting diodes (PeLEDs) requires a deep understanding of exciton dynamics in these materials. This review begins with a fundamental overview of the structural and photophysical properties of layered halide perovskites, then delves into the importance of dimensionality control and cascade energy transfer in quasi‐2D PeLEDs. In the second half of the review, more complex exciton dynamics, such as multiexciton processes and triplet exciton dynamics, from the perspective of LEDs are explored. Through this comprehensive review, an in‐depth understanding of the critical aspects of exciton dynamics in layered halide perovskites and their impacts on future research and technological advancements for layered halide PeLEDs is provided.
-
Abstract Perovskite light‐emitting diodes (LEDs) have recently attracted great research interest for their narrow emissions and solution processability. Remarkable progress has been achieved in green perovskite LEDs in recent years, but not blue or red ones. Here, highly efficient and spectrally stable red perovskite LEDs with quasi‐2D perovskite/poly(ethylene oxide) (PEO) composite thin films as the light‐emitting layer are reported. By controlling the molar ratios of organic salt (benzylammonium iodide) to inorganic salts (cesium iodide and lead iodide), luminescent quasi‐2D perovskite thin films are obtained with tunable emission colors from red to deep red. The perovskite/polymer composite approach enables quasi‐2D perovskite/PEO composite thin films to possess much higher photoluminescence quantum efficiencies and smoothness than their neat quasi‐2D perovskite counterparts. Electrically driven LEDs with emissions peaked at 638, 664, 680, and 690 nm have been fabricated to exhibit high brightness and external quantum efficiencies (EQEs). For instance, the perovskite LED with an emission peaked at 680 nm exhibits a brightness of 1392 cd m−2and an EQE of 6.23%. Moreover, exceptional electroluminescence spectral stability under continuous device operation has been achieved for these red perovskite LEDs.
-
Abstract Perovskite light‐emitting diodes (PeLEDs) have received great attention for their potential as next‐generation display technology. While remarkable progress has been achieved in green, red, and near‐infrared PeLEDs with external quantum efficiencies (EQEs) exceeding 20%, obtaining high performance blue PeLEDs remains a challenge. Poor charge balance due to large charge injection barriers in blue PeLEDs has been identified as one of the major roadblocks to achieve high efficiency. Here band edge control of perovskite emitting layers for blue PeLEDs with enhanced charge balance and device performance is reported. By using organic spacer cations with different dipole moments, that is, phenethyl ammonium (PEA), methoxy phenethyl ammonium (MePEA), and 4‐fluoro phenethyl ammonium (4FPEA), the band edges of quasi‐2D perovskites are tuned without affecting their band gaps. Detailed characterization and computational studies have confirmed the effect of dipole moment modification to be mostly electrostatic, resulting in changes in the ionization energies of ≈0.45 eV for MePEA and ≈ −0.65 eV for 4FPEA based thin films relative to PEA‐based thin films. With improved charge balance, blue PeLEDs based on MePEA quasi‐2D perovskites show twofold increase of the EQE as compared to the control PEA based devices.
-
Metal halide perovskites (MHPs) have emerged as new‐generation highly efficient narrow‐band luminescent materials with applications in various optoelectronic devices, including photovoltaics (PVs), light‐emitting diodes (LEDs), lasers, and scintillators. Since the demonstration of efficient room‐temperature electroluminescence from MHPs in 2014, remarkable progress has been achieved in the development and study of light‐emitting MHP materials and devices. While the device efficiencies of MHP LEDs (PeLEDs) have significantly improved over a short period of time, their overall performance has not reached the levels of mature technologies yet, such as organic LEDs (OLEDs) and quantum dot LEDs (QDLEDs), to enable practical applications. Many issues and challenges, including low operational stability, lack of efficient blue PeLEDs, and toxicity of MHPs, remain to be addressed. Herein, some of the most exciting progress achieved in the development of efficient and stable PeLEDs during the last few years are introduced, the main issues and challenges in the field are discussed, and the prospects on addressing these issues and challenges are provided. With continuous effort, the potential of PeLEDs to become a commercially available LED technology for display and lighting applications in the future looks optimistic.