The formation of polar cap density enhancements, such as tongues‐of‐ionization (TOIs), are often attributed to enhanced dayside reconnection and convection due to solar wind changes. However, ionospheric poleward moving density enhancements can also form in the absence of changes in the solar wind. This study examines how TOI and patch events that are not triggered by solar wind changes relate to magnetospheric processes, specifically substorms. Based on total electron content and Super Dual Auroral Radar Network (SuperDARN) observations, we find substorms that occur at the same time as TOIs are associated with sudden enhancements in dayside poleward flows during the substorm expansion phase. Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) observations also show enhanced field‐aligned currents (FACs) that extend into the dayside ionosphere during this period. We suggest that the global enhancement of FACs and convection during these substorms are the drivers of these TOIs by enhancing dayside convection and transporting high‐density lower‐latitude plasma into the polar cap. However, we also find that not all substorms are coincident with polar cap density enhancements. A superposed epoch study showed that the AL index for TOIs during substorms is not particularly stronger than substorms without TOIs, but epoch studies of AMPERE observations do show events with TOIs to have a higher total FAC on both the dayside and nightside. Our results show the importance of TOI formation during substorms when solar wind drivers are absent, and the importance of considering substorms in the global current system. This work also shows the need to incorporate substorms into models of high‐latitude global convection and currents.
Super Dual Auroral Radar Network (SuperDARN) ionospheric convection maps are a powerful tool for the study of solar wind‐magnetosphere‐ionosphere interactions. SuperDARN data have high temporal (approximately minutes) and spatial (∼45 km) resolution, meaning that the convection can be mapped on fine time scales that show more detail than the large‐scale changes in the pattern. The Heppner‐Maynard boundary (HMB) defines the low‐latitude limit of the convection region, and its identification is an essential component of the standard SuperDARN convection mapping technique. However, the estimation of the latitude of this boundary is dependent on ionospheric scatter availability. Consequentially it is susceptible to nonphysical variations as areas of scatter in different latitude and local time regions appear and disappear, often due to changing propagation conditions. In this paper, the HMB is compared to an independent field‐aligned current data set from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). A linear trend is found between the HMB and the boundary between the AMPERE Region 1 and Region 2 field‐aligned currents in the Northern Hemisphere, at both solar minimum and solar maximum. The use of this trend and the AMPERE current data set to predict the latitude position of the HMB is found to improve the interpretation of the SuperDARN measurements in convection mapping.
more » « less- PAR ID:
- 10454518
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 125
- Issue:
- 5
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Two‐dimensional thermospheric wind fields, at both
E andF region altitudes within a common vertical volume, were made using a Scanning Doppler Imager (SDI) at Poker Flat, Alaska, during a substorm event. Coinciding with these observations wereF region plasma velocity measurements from the Super Dual Auroral Radar Network (SuperDARN) and estimations of the total downward and upward field‐aligned current density from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). This combination of instruments gives an excellent opportunity to examine the spatial characteristics of high‐latitude ionosphere‐thermosphere coupling and how a process which is triggered in the magnetosphere (the substorm) affects that coupling at different altitudes. We find that during the substorm growth phase, theF region thermospheric winds respond readily to an expanding ionospheric plasma convection pattern, while theE region winds appear to take a much longer period of time. The differing response timescales of theE andF region winds are likely due to differences in neutral density at those altitudes, resulting inE region neutrals being much more “sluggish” with regard to ion drag. We also observe increases in theF region neutral temperature, associated with neutral winds accelerating during both substorm growth and recovery phases. -
Abstract Field‐aligned currents from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) were combined with simultaneous and coincident observations of ionospheric conductivities made by the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska for 20 geomagnetically active days. The height‐integrated conductivities (conductances) were determined from the electron densities measured by the radar between 80 and 200 km altitude. Binning and averaging the data by field‐aligned current density and magnetic local time, we find that the currents correlate with conductances in both upward and downward current regions over some magnetic local times. The strongest correlation is seen in the late evening and morning sectors, with the Hall conductances two to three times larger than the Pedersen conductances for the same values of the field‐aligned current. The observed correlations reflect the mean energy of auroral precipitation, the contributions from electrons and protons to producing enhanced conductances, and the availability of charge carriers on auroral field lines. We apply linear fitting and smoothing to the correlations to construct an empirical model for specifying auroral conductances globally from AMPERE field‐aligned current maps. The energy fluxes from precipitating particles derived from the model conductances compare well with those derived using AMPERE data combined with satellite‐based measurements of far ultraviolet emissions, suggesting the results obtained at Poker Flat may be applicable to all high latitude locations. The ability to estimate conductances from AMPERE field‐aligned current maps provides the means to develop a global conductance model for the auroral ionosphere.
-
null (Ed.)Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap.more » « less
-
Abstract We calculate high latitude electrodynamic parameters using global maps of field‐aligned currents from the Active Magnetosphere and Planetary Response Experiment (AMPERE). The model is based on previous studies that relate field‐aligned currents to auroral Pedersen and Hall conductances measured by incoherent scatter radar. The field‐aligned currents and conductances are used to solve for the electric potential at high latitudes from which electric fields are computed. The electric fields are then used with the conductances to calculate horizontal ionospheric currents. We validate the results by simulating the SuperMAG magnetic indices for 30 geomagnetically active days. The correlation coefficients between derived and actual magnetic indices were 0.68, 0.76, and 0.84 for the SMU, SML, and SME indices, respectively. We show examples of times when the simulations differ markedly from the measured indices and attribute them to either small‐scale, substorm‐related current structures or the effects of neutral winds. Overall, the performance of the model demonstrates that with few exceptions, auroral electrodynamic parameters can be accurately deduced from the global field‐aligned current distribution provided by AMPERE.