skip to main content


Title: Circulation and Hydrography in the Western South Atlantic Shelf and Export to the Deep Adjacent Ocean: 30°S to 40°S
Abstract

High sea surface chlorophyll concentration on the Argentine Continental Shelf frequently extends to the deep ocean in the vicinity of the Brazil/Malvinas Confluence (BMC). The offshore transport of shelf waters likely plays a key role in the biogeochemical balance of the western South Atlantic and promotes the offshore transport of planktonic species. We analyze data from an oceanographic survey carried out in the western South Atlantic shelf between 31°S and 38°S in October 2013. We describe the distribution and circulation of the water masses and focus on the exchanges with the open ocean. On‐shelf subsurface intrusions of oceanic waters and river discharge supply nutrients to the shelf. A low‐salinity tongue of Río de la Plata (RDP) waters extends northward to 32°S. Below these waters Subantarctic and Subtropical Shelf Waters (SASW and STSW) meet to form the Subtropical Shelf Front. The main SASW branch, oversaturated in oxygen and with high‐fluorescence mixes with a detachment of Brazil Current waters at 38°S and is exported offshore along the BMC. A second branch of SASW reaches 33°S mixing along its way with RDP and STSW and returns southward after splitting into an onshore and an offshore branch. The offshore branch is exported to the open ocean through the BMC. These export routes are in overall qualitative agreement with those indicated by a high‐resolution reanalysis. We estimate a net off‐shelf transport (geostrophic [96.2%] plus Ekman [3.8%]) of 3.44 Sv to the open ocean between 32.1°S and 37.7°S. The majority of the offshore flow occurs between 34.7°S and 37.7°S.

 
more » « less
NSF-PAR ID:
10454525
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
125
Issue:
10
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The variability and drivers of the cross-shelf exchanges between the Southwestern Atlantic shelf and the open ocean from 30 to 40°S are analyzed using a high-resolution ocean model reanalysis at daily resolution. The model's performance was first evaluated using altimetry data, and independent mooring and hydrographic data collected in the study area. Model transports are in overall good agreement with all other estimates. The record-mean (1993–2018) cross-shore transport is offshore, 2.09 ± 1.60 Sv. 73% of the shelf-open ocean exchange occurs in the vicinity of Brazil-Malvinas Confluence (~38°S) and 20% near 32°S. This outflow is mostly contributed by northward alongshore transport through 40°S (63%) and the remaining by southward transport through 30°S (37%). The cross-shore flow presents weak seasonal variations, with a maximum in austral summer, and high variability at subannual and weekly time scales. The latter is mainly associated with abrupt wind changes generated by synoptic atmospheric systems. Alongshore wind variations set up sea-level changes in the inner shelf which in turn drive large anomalies in the associated geostrophic alongshore flow. The difference in inner shelf sea-level anomalies at 30 and 40°S is a good indicator of cross-shelf exchange at seasonal and shorter time scales. Episodes of extreme offshore transport that reach up to 9.45 Sv and last about 2 days are driven by convergence of these alongshore flows over the shelf. Large exports of shelf waters lead to freshening of the upper open ocean as revealed by in-situ and satellite observations. In contrast, onshore extreme events drive open ocean water intrusions of up to 6.53 Sv and last <4 days. These inflows, particularly the subtropical waters from the Brazil Current, induce a substantial salinification of the outer shelf. 
    more » « less
  2. Abstract

    A high‐resolution ocean model is used to characterize the circulation and cross‐shelf exchanges in the Brazilian/Uruguayan portion of the southwestern Atlantic shelf. Cross‐shelf exchanges are strongly modulated by the bottom topography. There is ∼1.2 Sv of on‐shelf transport between 21°S and 25.2°S, and ∼1.6 Sv of off‐shelf transport between 35°S and 25.2°S. North of 25.2°S, the cross‐shelf exchanges show a two‐layer structure with an off‐shelf flow in the upper 50m and on‐shelf flow deep below. A Lagrangian diagnostic shows that ∼0.15 Sv of deep waters from the Brazil Current (z > 200 m) are injected into the shelf. Mixing with ambient waters produces a spicier (warmer and saltier) water mass, which is ejected into the open ocean in the southern region. Backward in‐time particle's trajectories analysis reveals that 95% of the southward shelf transport at 32°S originates in the open ocean at 22°S. Our model diagnostics show that there is a very limited connectivity between the shelf regions north and south of Cabo Frio. Correlation analysis shows no significant influence of El Niño Southern Oscillation (ENSO) and Southern Annular Mode (SAM) on the time variability of the cross‐shelf transport. Cross‐shelf transports, however, are significantly correlated with the local wind stress variability.

     
    more » « less
  3. Abstract

    Oceanic heat strongly influences the glaciers and ice shelves along West Antarctica. Prior studies show that the subsurface onshore heat flux from the Southern Ocean on the shelf occurs through deep, glacially carved channels. The mechanisms enabling the export of colder shelf waters to the open ocean, however, have not been determined. Here, we use ocean glider measurements collected near the mouth of Marguerite Trough (MT), west Antarctic Peninsula, to reveal shelf‐modified cold waters on the slope over a deep (2,700 m) offshore topographic bank. The shelf hydrographic sections show subsurface cold features (θ<=1.5 °C), and associated potential vorticity fields suggest a significant instability‐driven eddy field. Output from a high‐resolution numerical model reveals offshore export modulated by small (6 km), cold‐cored, cyclonic eddies preferentially generated along the slope and at the mouth of MT. While baroclinic and barotropic instabilities appear active in the surrounding open ocean, the former is suppressed along the steep shelf slopes, while the latter appears enhanced. Altimetry and model output reveal the mean slope flow splitting to form an offshore branch over the bank, which eventually forms a large (116 km wide) persistent lee eddy, and an onshore branch in MT. The offshore flow forms a pathway for the small cold‐cored eddies to move offshore, where they contribute significantly to cooling over the bank, including the large lee eddy. These results suggest eddy fluxes, and topographically modulated flows are key mechanisms for shelf water export along this shelf, just as they are for the shoreward warm water transport.

     
    more » « less
  4. Abstract

    In the North Atlantic Ocean, dinitrogen (N2) fixation on the western continental shelf represents a significant fraction of basin‐wide nitrogen (N) inputs. However, the factors regulating coastal N2fixation remain poorly understood, in part due to sharp physico‐chemical gradients and dynamic water mass interactions that are difficult to constrain via traditional oceanographic approaches. This study sought to characterize the spatial heterogeneity of N2fixation on the western North Atlantic shelf, at the confluence of Mid‐ and South Atlantic Bight shelf waters and the Gulf Stream, in August 2016. Rates were quantified using the15N2bubble release method and used to build empirical models of regional N2fixation via a random forest machine learning approach. N2fixation rates were then predicted from high‐resolution CTD and satellite data to infer the variability of its depth and surface distributions, respectively. Our findings suggest that the frontal mixing zone created conditions conducive to exceptionally high N2fixation rates (> 100 nmol N L−1d−1), which were likely driven by the haptophyte‐symbiont UCYN‐A. Above and below this hotspot, N2fixation rates were highest on the shelf due to the high particulate N concentrations there. Conversely, specific N2uptake rates, a biomass‐independent metric for diazotroph activity, were enhanced in the oligotrophic slope waters. Broadly, these observations suggest that N2fixation is favored offshore but occurs continuously across the shelf. Nevertheless, our model results indicate that there is a niche for diazotrophs along the coastline as phytoplankton populations begin to decline, likely due to exhaustion of coastal nutrients.

     
    more » « less
  5. Abstract

    The circulation within marginal seas subject to periodic winds, and their exchange with the open ocean, are explored using idealized numerical models and theory. This is motivated by the strong seasonal cycle in winds over the Nordic Seas and the exchange with the subpolar North Atlantic Ocean through the Denmark Strait and Faroe Bank Channel. Two distinct regimes are identified: an interior with closedf/hcontours and a shallow shelf region that connects to the open ocean. The interior develops a strong oscillating along-topography circulation with weaker ageostrophic radial flows. The relative importance of the bottom Ekman layer and interior ageostrophic flows depends only onωh/Cd, whereωis the forcing frequency,his the bottom depth, andCdis a linear bottom drag coefficient. The dynamics on the shelf are controlled by the frictional decay of coastal waves over an along-shelf scaleLy=f0LsHs/Cd, wheref0is the Coriolis parameter, andLsandHsare the shelf width and depth. ForLymuch less than the perimeter of the basin, the surface Ekman transport is provided primarily by overturning within the marginal sea and there is little exchange with the open ocean. ForLyon the order of the basin perimeter or larger, most of the Ekman transport is provided from outside the marginal sea with an opposite exchange through the deep part of the strait. This demonstrates a direct connection between the dynamics of coastal waves on the shelf and the exchange of deep waters through the strait, some of which is derived from below sill depth.

    Significance Statement

    The purpose of this study is to understand how winds over marginal seas, which are semienclosed bodies of water around the perimeter of ocean basins, can force an exchange of water, heat, salt, and other tracers through narrow straits between the marginal sea and the open ocean. Understanding this exchange is important because marginal seas are often regions of net heat, freshwater, and carbon exchange with the atmosphere. The present results identify a direct connection between processes along the coast of the marginal sea and the flow of waters through deep straits into the open ocean.

     
    more » « less