skip to main content


Title: Evolutionary trade‐offs may interact with physiological constraints to maintain color variation
Abstract

Animal coloration is a multifaceted trait with many ecological roles and related to a variety of developmental and physiological processes. Consequently, coloration is often subject to a variety of selective pressures, leading to the evolutionary maintenance of variation. In this study, we investigated hypotheses related to the maintenance of dorsal color variation in wood frogs (Rana sylvatica). First, we tested for multimodality, and whether color correlates with body size or condition or varies by sex or age class. We combined behavioral trials with visual modeling to test for sex recognition. We also considered visual models for predators and tested for an interaction between discriminability indexes (JND) of color channel (chromatic vs. achromatic) and predator type (birds vs. snakes), as well as for a within individual trade‐off between the JND of chromatic and achromatic coloration. Finally, we tested for disruptive viability selection on color using predation trials, and for antagonistic directional selection between viability selection and reproductive investment of females. We found that wood frogs present continuous color variation that does not correlate with body size or condition, but that changes with age. Wood frogs present subtle sexual dichromatism, but we found no evidence for a role of color in sex recognition. Instead, we discuss the possibility that sex differences might, at least in part, have a demographic explanation. Predator visual models indicated that wood frogs cannot solely rely on dorsal coloration for camouflage. Moreover, different predators might present selective pressures in different color channels, while individuals’ achromatic and chromatic coloration trade‐off in JND. Therefore, different selective pressures caused by different predators might interact with ontogenetic changes and developmental/physiological trade‐offs to maintain color variation. We found no relationship between color and survival or reproductive investment, suggesting further work is required to fully understand selection on color. Our results highlight the importance of understanding evolutionary trade‐offs and developmental/physiological constraints in combination with one another, and suggest the potential for an interaction between these proximate and ultimate mechanisms in the evolutionary maintenance of variation. These results likely extend beyond color expression in amphibians, and exemplify a more general process for such evolutionary outcomes.

 
more » « less
NSF-PAR ID:
10454530
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Monographs
Volume:
91
Issue:
1
ISSN:
0012-9615
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Colourful displays are used by diverse taxa to warn predators of dangerous defences (aposematism). Aposematic coloration is especially widespread among amphibians, which are often protected by harmful toxins. Pacific newts (Taricha) are considered a model of aposematism because when threatened, they arch the head and tail upwards to expose a vivid orange ventrum against a dark dorsum. Given that newts are defended by tetrodotoxin (TTX), a lethal neurotoxin, this signal is assumed to warn predators that an attack would be risky. However, colours have not been quantified in Taricha, and it remains unknown whether coloration provides qualitatively honest (signalling toxic defence) or quantitatively honest (signalling toxin level) warnings. We used two colour quantification methods (spectrometry and hyperspectral imaging) to measure chromatic (hue) and achromatic (brightness) qualities of ventral and dorsal coloration in two newt species (Taricha granulosa and Taricha sierrae). We assessed qualitative honesty using visual models of potential predators (snakes, birds and mammals). Next, we evaluated quantitative honesty by measuring TTX in newts and examining the potential correlation between defence level (amount of TTX) and colorimetrics. We found support for qualitative but not quantitative honesty. Selective pressures and evolutionary constraints might impede the evolution of honest quantitative signalling in this system.

     
    more » « less
  2. Abstract

    Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard,Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized approach. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs; select different refuge types; and re-emerge less often after being approached compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.

    Significance statement

    Color polymorphic species often differ in behaviors related to reproduction, but differences in other behaviors are relatively underexplored. In this study, we use an experimental approach in two natural populations of color populations of color polymorphic lizards to determine that color morphs have diverged in their escape behaviors. By conducting our experiments in two different populations with similar predator regimes, we show for the first time that behavioral differences among intra-specific color morphs are repeatable across populations, suggesting that alternative behavioral strategies have evolved in this species. Using this experimental approach, we demonstrate that the brightest orange morph stays closer to refuge than other morphs, uses a different refuge type (vegetation) more often than other morphs (wall crevices), and take much longer to emerge from refuge after a simulated predation event than other morphs. Thus, selective pressures from visual predators may differ between morphs and play a role in the evolution and maintenance of color polymorphisms in these types of systems. Our study species,Podarcis erhardii, belongs to a highly color polymorphic genus (19/23 spp. are color polymorphic) that contains the same three color morphs, thus we believe our results may be relevant to more than justP.erhardii.

     
    more » « less
  3. Abstract

    Many animal species have evolved striking colour patterns that attract the opposite sex and intimidate rivals. Although conspicuous coloration is usually restricted to adults in the context of reproduction, this is not always the case. Juvenile collared lizards (Crotaphytus collaris) are sexually dichromatic, wherein males exhibit ‘dorsolateral bars’ that are bright orange and showy, whereas females are light tan and inconspicuous. Given that adult male collared lizards suffer increased predation because of bright adult coloration, we hypothesized that juvenile males might also be more detectable to predators owing to the conspicuousness of their dorsolateral bars. To test this hypothesis, we measured the reflectance of the dorsolateral bars, non-bar background body regions, and the rocky habitat in which the lizards live. We modelled the vision of our study species and its dominant predators to quantify and compare statistically the contrasts of male and female dorsolateral bars against the natural rock background. We also calculated lizard survivorship over a 4 year study period. We found that male orange bars exhibited significantly higher chromatic contrast, but significantly lower achromatic contrast, than female bars when perceived through all visual models. However, the dorsolateral background colour of juvenile males and females did not differ significantly in chromatic or achromatic contrast from rocks in any visual model. Female lizards survived better than male lizards to the yearling (reproductive) stage. Our findings indicate that juvenile male bars are conspicuous both to conspecifics and to predators and that the bars probably increase predation on juvenile males.

     
    more » « less
  4. Abstract

    We used video playback of courting maleSchizocosa ocreatawolf spiders to examine responses of intended receivers (conspecific females) and eavesdroppers (competitor males, predatory spiders, toads) to manipulations of spider color (natural color, monochromatic gray, monochromatic RBG average) displayed against complex leaf litter backgrounds (color, grayscale). Models of chromatic and achromatic contrast between spider stimuli and backgrounds were used to predict receiver responses. The results support the hypothesis that interactions between spider and background coloration affect detection and recognition, although responses varied with receiver type. Detection responses of intended receivers (femaleS. ocreata) did not fit predictions of the chromatic contrast model in some cases, but showed a fair fit to the achromatic model. Detection responses of social eavesdroppers (maleS. ocreata) fit the chromatic and achromatic contrast models slightly better than did female responses (poor fit and very good fit, respectively). Eavesdropping wolf spider predators (Rabidosa) exhibited detection responses that significantly matched predictions of the chromatic (very good fit) and achromatic (excellent fit) models. Whereas jumping spiders (Phidippus) showed a good fit to the chromatic and achromatic contrast models, toad predators had a good fit only to the chromatic model. Recognition responses revealed a different pattern of fit to the chromatic and achromatic models across receiver types, althoughRabidosaagain indicated a significant fit to both models. Taken together, the results of this study identify both chromatic and achromatic features of spider appearance as likely explanations for differences in behavioral responses of intended and unintended receivers. This outcome suggests the possibility that both sexual and natural selection likely target different features of male appearance during courtship.

     
    more » « less
  5. Abstract

    Colour signalling traits are often lost over evolutionary time, perhaps because they increase vulnerability to visual predators or lose relevance in terms of sexual selection. Here, we used spectrometric and phylogenetic comparative analyses to ask whether four independent losses of a sexually selected blue patch are spectrally similar, and whether these losses equate to a decrease in conspicuousness or to loss of a signal. We found that patches were lost in two distinct ways: either increasing reflectance primarily at very long or at very short wavelengths, and that species with additional colour elements (UV, green and pink) may be evolutionary intermediates. In addition, we found that patch spectral profiles of all species were closely aligned with visual receptors in the receiver's retina. We found that loss of the blue patch makes males less conspicuous in terms of chromatic conspicuousness, but more conspicuous in terms of achromatic contrast, and that sexual dimorphism often persists regardless of patch loss. Dorsal surfaces were considerably more cryptic than were ventral surfaces, and species in which male bellies were the most similar in conspicuousness to their dorsal surfaces were also the most sexually dimorphic. These results emphasize the consistent importance of sexual selection and its flexible impact on different signal components through evolutionary time.

     
    more » « less