skip to main content

Title: Effects of drying methods on plant lipid compounds and bulk isotopic compositions

Plant lipid biomarkers, such as plant waxes and terpenoids, and the stable isotopic composition of bulk leaves are widely used in both modern and paleoclimate studies for tracking vegetation and climate. However, the effects of different drying methods on the preservation of plant lipid biomarkers and the stable isotopic compositions of leaves are less explored. Here, we investigated various drying methods for the measurement of plant lipid concentrations and bulk leaf isotopic compositions.


Leaves from four tree species (Acer rubrum,Pinus sylvestris,Platanus occidentalis, andTaxodium distichum) were collected and dried using air, an oven, a freeze‐dryer, and a microwave. We compared concentrations of leaf waxes and terpenoids and carbon (δ13C) and nitrogen (δ15N) isotopic compositions of leaves by different drying methods.


The air, oven, freeze‐dryer, and microwave drying methods did not affect lipid concentrations significantly, and only a few homologues differed (38.1% or 41.8 μg/g on average) possibly due to biological variations or enhanced extraction efficiencies. The δ13C values were not affected by drying methods, whereas the δ15N values in oven‐dried leaves in some species were higher by 0.2–0.7‰ than those obtained by other methods. Though small, we attribute these patterns to loss of leaf compounds with lower isotope ratios during oven‐drying.


Based on our results, each drying technique yielded equivalent results for all plant wax and terpenoid concentrations and bulk leaf δ13C values; however, oven‐drying modified the δ15N values.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Rapid Communications in Mass Spectrometry
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rationale

    It is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values.


    We evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years.


    Tissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰).


    The effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.

    more » « less
  2. Rationale

    The grey seal,Halichoerus grypus(GS), and the northern elephant seal,Mirounga angustirostris(NES), come ashore for reproduction. This period involves intense physiological processes such as lactation in females and a developmental post‐weaning fast in juveniles. Previous studies have shown thatδ13C andδ15N values are affected by starvation, but the precise effects of fasting associated with lactation and post‐weaning fast in seals remain poorly understood.


    To examine the effect of lactation and post‐weaning fast on stable isotope ratios in GS and NES, blood and hair were sampled from 21 GS mother‐pup pairs on the Isle of May and on 22 weaned NES pups at Año Nuevo State Reserve during their respective breeding seasons. Milk samples were also collected from GS mothers. Stable isotope measurements were performed with an isotope ratio mass spectrometer coupled to an N‐C elemental analyser.


    Changes in stable isotope ratios in blood components during fasting were similar and weak between GS and NES mothers especially in blood cells (GS:Δ15N = 0.05‰,Δ13C = 0.02‰; NES:Δ15N = 0.1‰,Δ13C = 0.1‰). GS showed a15N discrimination factor between maternal and pup blood cells and milk, but not for13C. The strongest relationship between the isotopic compositions of the mother and the pup was observed in the blood cells.


    Isotopic consequences of lactation, fasting, and growth seem limited in NES and GS, especially in medium‐term integrator tissues of feeding activity such as blood cells. Stable isotope ratios in the blood of pups and mothers are correlated. We observed a subtle mother‐to‐pup fractionation factor. Our results suggest that pup blood cells are mostly relevant for exploring the ecology of female seals.

    more » « less
  3. Abstract

    Earth system models (ESMs) rely on the calculation of canopy conductance in land surface models (LSMs) to quantify the partitioning of land surface energy, water, andCO2fluxes. This is achieved by scaling stomatal conductance,gw, determined from physiological models developed for leaves. Traditionally, models forgwhave been semi‐empirical, combining physiological functions with empirically determined calibration constants. More recently, optimization theory has been applied to modelgwinLSMs under the premise that it has a stronger grounding in physiological theory and might ultimately lead to improved predictive accuracy. However, this premise has not been thoroughly tested. Using original field data from contrasting forest systems, we compare a widely used empirical type and a more recently developed optimization‐typegwmodel, termedBBandMED, respectively. Overall, we find no difference between the two models when used to simulategwfrom photosynthesis data, or leaf gas exchange from a coupled photosynthesis‐conductance model, or gross primary productivity and evapotranspiration for aFLUXNETtower site with theCLM5 communityLSM. Field measurements reveal that the key fitted parameters forBBandMED,g1Bandg1M,exhibit strong species specificity in magnitude and sensitivity toCO2, andCLM5 simulations reveal that failure to include this sensitivity can result in significant overestimates of evapotranspiration for high‐CO2scenarios. Further, we show thatg1Bandg1Mcan be determined from meanci/ca(ratio of leaf intercellular to ambientCO2concentration). Applying this relationship withci/cavalues derived from a leaf δ13C database, we obtain a global distribution ofg1Bandg1M, and these values correlate significantly with mean annual precipitation. This provides a new methodology for global parameterization of theBBandMEDmodels inLSMs, tied directly to leaf physiology but unconstrained by spatial boundaries separating designated biomes or plant functional types.

    more » « less
  4. Abstract Objectives

    Ecological similarity between species can lead to interspecific trophic competition. However, when ecologically similar species coexist, they may differ in foraging strategies and habitat use, which can lead to niche partitioning. As the body tissues of consumers contain a stable isotope signature that reflects the isotopic composition of their diet, stable isotope analysis is a useful tool to study feeding behavior. We measured the isotopic niche width, which is a proxy for trophic niche width, of mantled (Alouatta palliata) and black (A. pigra) howler monkeys. Specifically, studied populations in allopatry and sympatry to assess whether these species showed niche partitioning.

    Materials and Methods

    Between 2008 and 2012, we collected hair samples from 200 subjects (113 black and 87 mantled howler monkeys) and used continuous flow isotope ratio mass spectrometry to estimateδ13C andδ15N. We described the isotopic niche width of each species in allopatry and sympatry with the Bayesian estimation of the standard ellipse areas.


    In allopatry, isotopic niche width and isotopic variation were similar in both species. In sympatry, black howler monkeys had a significantly broader isotopic niche, which was mainly determined by highδ15N values, and included the majority of mantled howler monkeys' isotopic niche. The isotopic niche of mantled howler monkeys did not differ between sympatry and allopatry.


    The coexistence of these ecologically similar species may be linked to trophic niche adjustments by one species, although the particular features of such adjustments (e.g., dietary, spatial, or sensory partitioning) remain to be addressed.

    more » « less
  5. Abstract

    The distribution of the short‐lived radionuclide26Al in the early solar system remains a major topic of investigation in planetary science. Thousands of analyses are now available but grossite‐bearing Ca‐, Al‐rich inclusions (CAIs) are underrepresented in the database. Recently found grossite‐bearing inclusions inCO3 chondrites provide an opportunity to address this matter. We determined the oxygen and magnesium isotopic compositions of individual phases of 10 grossite‐bearingCAIs in the Dominion Range (DOM) 08006 (CO3.0) andDOM08004 (CO3.1) chondrites. All minerals inDOM08006CAIs as well as hibonite, spinel, and pyroxene inDOM08004 are uniformly16O‐rich (Δ17O = −25 to −20‰) but grossite and melilite inDOM08004CAIs are not; Δ17O of grossite and melilite range from ~ −11 to ~0‰ and from ~ −23 up to ~0‰, respectively. Even within this small suite, in the two chondrites a bimodal distribution of the inferred initial26Al/27Al ratios (26Al/27Al)0is seen, with four having (26Al/27Al)0≤1.1 × 10−5and six having (26Al/27Al)0≥3.7 × 10−5. Five of the26Al‐richCAIs have (26Al/27Al)0within error of 4.5 × 10−5; these values can probably be considered indistinguishable from the “canonical” value of 5.2 × 10−5given the uncertainty in the relative sensitivity factor for grossite measured by secondary ion mass spectrometry. We infer that the26Al‐poorCAIs probably formed before the radionuclide was fully mixed into the solar nebula. All minerals in theDOM08006CAIs, as well as spinel, hibonite, and Al‐diopside in theDOM08004CAIs retained their initial oxygen isotopic compositions, indicating homogeneity of oxygen isotopic compositions in the nebular region where theCOgrossite‐bearingCAIs originated. Oxygen isotopic heterogeneity inCAIs fromDOM08004 resulted from exchange between the initially16O‐rich (Δ17O ~−24‰) melilite and grossite and16O‐poor (Δ17O ~0‰) fluid during hydrothermal alteration on theCOchondrite parent body; hibonite, spinel, and Al‐diopside avoided oxygen isotopic exchange during the alteration. Grossite and melilite that underwent oxygen isotopic exchange avoided redistribution of radiogenic26Mg and preserved undisturbed internal Al‐Mg isochrons. The Δ17O of the fluid can be inferred from O‐isotopic compositions of aqueously formed fayalite and magnetite that precipitated from the fluid on theCOparent asteroid. This and previous studies suggest that O‐isotope exchange during fluid–rock interaction affected mostCAIs in CO ≥3.1 chondrites.

    more » « less