skip to main content

Title: Deciphering, Designing, and Realizing Self‐Folding Biomimetic Microstructures Using a Mass‐Spring Model and Inkjet‐Printed, Self‐Folding Hydrogels

Flat, organic microstructures that can self‐fold into 3D microstructures are promising for tissue regeneration, for being capable of distributing living cells in 3D while forming highly complex, biomimetic architectures to assist cells in performing regeneration. However, the design of self‐folding microstructures is difficult due to a lack of understanding of the underlying formation mechanisms. This study helps bridge this gap by deciphering the dynamics of the self‐folding using a mass‐spring model. This numerical study reveals that self‐folding procedure is multi‐modal, which can become random and unpredictable by involving the interplays between internal stresses, external stimulation, imperfection, and self‐hindrance of the folding body. To verify the numerical results, bilayered, hydrogel‐based micropatterns capable of self‐folding are fabricated using inkjet‐printing and tested. The experimental and numerical results are consistent with each other. The above knowledge is applied to designing and fabricating self‐folding microstructures for tissue‐engineering, which successfully creates 3D, cell‐scaled, and biomimetic microstructures, such as microtubes, branched microtubes, and hollow spheres. Embedded in self‐folded microtubes, human mesenchymal stem cells proliferate and form linear cell‐organization mimicking the cell morphology in muscles and tendons. The above knowledge and study platforms can greatly contribute to the research on self‐folding microstructures and applications to tissue regeneration.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Origami-based fabrication strategies open the door for developing new manufacturing processes capable of producing complex three-dimensional (3D) geometries from two-dimensional (2D) sheets. Nevertheless, for these methods to translate into scalable manufacturing processes, rapid techniques for creating controlled folds are needed. In this work, we propose a new approach for controlled self-folding of shape memory polymer sheets based on direct laser rastering. We demonstrate that rapidly moving a CO2 laser over pre-strained polystyrene sheets results in creating controlled folds along the laser path. Laser interaction with the polymer induces localized heating above the glass transition temperature with a temperature gradient across the thickness of the thin sheets. This gradient of temperature results in a gradient of shrinkage owing to the viscoelastic relaxation of the polymer, favoring folding toward the hotter side (toward the laser source). We study the influence of laser power, rastering speed, fluence, and the number of passes on the fold angle. Moreover, we investigate process parameters that produce the highest quality folds with minimal undesired deformations. Our results show that we can create clean folds up to and exceeding 90 deg, which highlights the potential of our approach for creating lightweight 3D geometries with smooth surface finishes that are challenging to create using 3D printing methods. Hence, laser-induced self-folding of polymers is an inherently mass-customizable approach to manufacturing, especially when combined with cutting for integration of origami and kirigami. 
    more » « less
  2. Abstract

    As the most versatile and promising cell source, stem cells have been studied in regenerative medicine for two decades. Currently available culturing techniques utilize a 2D or 3D microenvironment for supporting the growth and proliferation of stem cells. However, these culture systems fail to fully reflect the supportive biological environment in which stem cells reside in vivo, which contain dynamic biophysical growth cues. Herein, a 4D programmable culture substrate with a self‐morphing capability is presented as a means to enhance dynamic cell growth and induce differentiation of stem cells. To function as a model system, a 4D neural culture substrate is fabricated using a combination of printing and imprinting techniques keyed to the different biological features of neural stem cells (NSCs) at different differentiation stages. Results show the 4D culture substrate demonstrates a time‐dependent self‐morphing process that plays an essential role in regulating NSC behaviors in a spatiotemporal manner and enhances neural differentiation of NSCs along with significant axonal alignment. This study of a customized, dynamic substrate revolutionizes current stem cell therapies, and can further have a far‐reaching impact on improving tissue regeneration and mimicking specific disease progression, as well as other impacts on materials and life science research.

    more » « less
  3. Abstract

    Untethered stimuli‐responsive soft materials with programmed sequential self‐folding are of great interest due to their ability to achieve task‐specific shape transformation with complex final configuration. Here, reversible and sequential self‐folding soft actuators are demonstrated by utilizing a temperature‐responsive nanocomposite hydrogel with different folding speeds but the same chemical composition. By varying the UV light intensity during the photo‐crosslinking of the nanocomposite hydrogel, different types of microstructures can be realized via phase separation mechanisms, which allow to control the folding speeds. The self‐folding structures are fabricated by integrating two dissimilar materials (i.e., a nanocomposite hydrogel and an elastomer) into hinge‐based bilayer structures via extrusion‐based 3D printing. It has been demonstrated that the folding kinetics can be accelerated by more than one order of magnitude due to the phase‐separated microstructure formed by the relatively weaker UV intensity (≈10 mW cm‐2) compared to the one formed by stronger UV intensity (≈100 mW cm‐2). 3D structures with sequential self‐folding capabilities are realized by prescribing actuation speeds and folding angles to specific hinges of the nanocomposite hydrogel. Sequential folding box and self‐locking latch structures are fabricated to demonstrate the ability to capture and hold objects underwater.

    more » « less
  4. null (Ed.)
    Abstract The purpose of this paper is to characterize the dynamics and direction of self-folding of pre-strained polystyrene (PSPS) and non-pre-strained styrene (NPS), which results from local shrinkage using a new process of directed self-folding of polymer sheets based on a resistively heated ribbon that is in contact with the sheets. A temperature gradient across the thickness of this shape memory polymer (SMP) sheet induces folding along the line of contact with the heating ribbon. Varying the electric current changes the degree of folding and the extent of local material flow. This method can be used to create practical three-dimensional (3D) structures. Sheets of PSPS and NPS were cut to 10 × 20 mm samples, and their folding angles were plotted with respect to time, as obtained from in situ videography. In addition, the use of polyimide tape (Kapton) was investigated for controlling the direction of self-folding. Results show that folding happens on the opposite side of the sample with respect to the tape, regardless of which side the heating ribbon is on, or whether gravity is opposing the folding direction. The results are quantitatively explained using a viscoelastic finite element model capable of describing bidirectional folds arising from the interplay between viscoelastic relaxation and strain mismatch between polystyrene and polyimide. Given the tunability of fold times and the extent of local material flow, resistive-heat-assisted folding is a promising approach for manufacturing complex 3D lightweight structures by origami engineering. 
    more » « less
  5. Abstract

    The extracellular matrix (ECM) is a complex 3D framework of macromolecules, which regulate cell bioactivity via chemical and physical properties. The ECM's physical properties, including stiffness and physical constraints to cell shape, regulate actomyosin cytoskeleton contractions, which induce signaling cascades influencing gene expression and cell fate. Engineering such bioactivity, a.k.a., mechanotransduction, has been mainly achieved by 2D platforms such as micropatterns. These platforms cause cytoskeletal contractions with apico‐basal polarity and can induce mechanotransduction that is unnatural to most cells in native ECMs. An effective method to engineer mechanotransduction in 3D is needed. This work creates FiberGel, a 3D artificial ECM comprised of sub‐cellular scale fibers. These microfibers can crosslink into defined microstructures with the fibers' diameter, stiffness, and alignment independently tuned. Most importantly, cells are blended amongst the fibers prior to crosslinking, leading to homogeneously cellularized scaffolds. Studies using mesenchymal stem cells showed that the microfibers' diameter, stiffness, and alignment regulate 3D cell shape and the nuclei translocation of transcriptional coactivators YAP/TAZ (yes‐associated protein/transcriptional coactivator), which enables the control of cell differentiation and tissue formation. A novel technology based on repeated stretching and folding is created to synthesize FiberGel. This 3D platform can significantly contribute to mechanotransduction research and applications.

    more » « less