Population genomics has provided unprecedented opportunities to unravel the mysteries of marine organisms in the oceans' depths. The world's oceans, which make up 70% of our planet, encompass diverse habitats and host numerous unexplored populations and species. Population genomics studies of marine organisms are rapidly emerging and have the potential to transform our understanding of marine populations, species, and ecosystems, providing insights into how these organisms are evolving and how they respond to different stimuli and environments. This knowledge is critical for understanding the fundamental aspects of marine life, how marine organisms will respond to environmental changes, and how we can better protect and preserve marine biodiversity and resources. This book brings together leading experts in the field to address critical aspects of fundamental and applied research in marine species and share their research and insights crucial for understanding marine ecosystem diversity and function. It also discusses the challenges, opportunities and future perspectives of marine population genomics. 
                        more » 
                        « less   
                    
                            
                            Genomics of natural history collections for understanding evolution in the wild
                        
                    
    
            Abstract A long‐standing question in biology is how organisms change through time and space in response to their environment. This knowledge is of particular relevance to predicting how organisms might respond to future environmental changes caused by human‐induced global change. Usually researchers make inferences about past events based on an understanding of current static genetic patterns, but these are limited in their capacity to inform on underlying past processes. Natural history collections (NHCs) represent a unique and critical source of information to provide temporally deep and spatially broad time‐series of samples. By using NHC samples, researchers can directly observe genetic changes over time and space and link those changes with specific ecological/evolutionary events. Until recently, such genetic studies were hindered by the intrinsic challenges of NHC samples (i.e. low yield of highly fragmented DNA). However, recent methodological and technological developments have revolutionized the possibilities in the novel field of NHC genomics. In this Special Feature, we compile a range of studies spanning from methodological aspects to particular case studies which demonstrate the enormous potential of NHC samples for accessing large genomic data sets from the past to advance our knowledge on how populations and species respond to global change at multiple spatial–temporal scales. We also highlight possible limitations, recommendations and a few opportunities for future researchers aiming to study NHC genomics. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10454570
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology Resources
- Volume:
- 20
- Issue:
- 5
- ISSN:
- 1755-098X
- Page Range / eLocation ID:
- p. 1153-1160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Gossmann, Toni (Ed.)Abstract Biodiversity has experienced tremendous shifts in community, species, and genetic diversity during the Anthropocene. Understanding temporal diversity shifts is especially critical in biodiversity hotspots, i.e., regions that are exceptionally biodiverse and threatened. Here, we use museomics and temporal genomics approaches to quantify temporal shifts in genomic diversity in an assemblage of eight generalist highland bird species from the Ethiopian Highlands (part of the Eastern Afromontane Biodiversity Hotspot). With genomic data from contemporary and historical samples, we demonstrate an assemblage-wide trend of increased genomic diversity through time, potentially due to improved habitat connectivity within highland regions. Genomic diversity shifts in these generalist species contrast with general trends of genomic diversity declines in specialist or imperiled species. In addition to genetic diversity shifts, we found an assemblage-wide trend of decreased realized mutational load, indicative of overall trends for potentially deleterious variation to be masked or selectively purged. Across this avian assemblage, we also show that shifts in population genomic structure are idiosyncratic, with species-specific trends. These results are in contrast with other charismatic and imperiled African taxa that have largely shown strong increases in population genetic structure over the recent past. This study highlights that not all taxa respond the same to environmental change, and generalists, in some cases, may even respond positively. Future comparative conservation genomics assessments on species groups or assemblages with varied natural history characteristics would help us better understand how diverse taxa respond to anthropogenic landscape changes.more » « less
- 
            Abstract Understanding the evolutionary consequences of anthropogenic change is imperative for estimating long‐term species resilience. While contemporary genomic data can provide us with important insights into recent demographic histories, investigating past change using present genomic data alone has limitations. In comparison, temporal genomics studies, defined herein as those that incorporate time series genomic data, utilize museum collections and repeated field sampling to directly examine evolutionary change. As temporal genomics is applied to more systems, species and questions, best practices can be helpful guides to make the most efficient use of limited resources. Here, we conduct a systematic literature review to synthesize the effects of temporal genomics methodology on our ability to detect evolutionary changes. We focus on studies investigating recent change within the past 200 years, highlighting evolutionary processes that have occurred during the past two centuries of accelerated anthropogenic pressure. We first identify the most frequently studied taxa, systems, questions and drivers, before highlighting overlooked areas where further temporal genomic studies may be particularly enlightening. Then, we provide guidelines for future study and sample designs while identifying key considerations that may influence statistical and analytical power. Our aim is to provide recommendations to a broad array of researchers interested in using temporal genomics in their work.more » « less
- 
            Abstract Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants’ pores for gas exchange, are expected to decrease in density following increased CO2concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191Arabidopsis thalianahistorical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.more » « less
- 
            The rapidly growing body of publicly available sequencing data for rare species and/or wild-caught samples is accelerating the need for detailed records of the samples used to generate datasets. Many already published datasets are unlikely to ever be reused, not due to problems with the data themselves, but due to their questionable or unverifiable origins. In this paper, I present iNaturalist—a pre-existing citizen science platform that allows people to post photo observations of organisms in nature—as a tool that allows genomics researchers to rapidly publish observations of samples used to generate sequencing datasets. This practice aligns with the values of the open science movement, and I also discuss how iNaturalist, along with other online resources, can be used to create an open genomics pipeline that enables future replication studies and ensures the value of genomics datasets to future research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
