skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Anterior Insular Resting‐State Functional Connectivity is Related to Cognitive Reserve in Multiple Sclerosis
ABSTRACT BACKGROUND AND PURPOSE

Cognitive dysfunction is common in multiple sclerosis (MS). The dorsal anterior insula (dAI) is a key hub of the salience network (SN) orchestrating access to critical cognitive brain regions. The aim of this study was to assess whole‐brain dAI intrinsic functional connectivity (iFC) using resting‐state functional MRI (rs‐fMRI) in people with MS and healthy controls (HC) and test the relationship between cognitive reserve (CR) and dAI iFC in people with MS.

METHODS

We studied 28 people with relapsing‐remitting MS and 28 HC. CR index was quantified by combining premorbid IQ, leisure activities, and education level. For whole‐brain iFC analyses, the bilateral dAI were used as seeds. Individual subject correlation maps were entered into general linear models for group comparison and to analyze the effect of CR index on dAI iFC, controlling for multiple comparisons. The correlation between CR index and iFC was assessed using a linear regression model.

RESULTS

rs‐fMRI analyses revealed a negative relationship between CR index and iFC within the left dAI and a left occipital cluster in people with MS including regions of the cuneus, superior occipital gyrus, and parieto‐occipital sulcus. The regression analysis showed that people with MS and a higher CR index had a statistically significantly reduced iFC within the left dAI and the cluster.

CONCLUSIONS

CR is relevant to functional connectivity within one of the main nodes of the SN, the dAI, and occipital regions in MS. These results have implications for how CR may modulate the susceptibility to cognitive dysfunction in MS.

 
more » « less
NSF-PAR ID:
10454578
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Neuroimaging
Volume:
31
Issue:
1
ISSN:
1051-2284
Page Range / eLocation ID:
p. 98-102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting‐state fMRI (rs‐fMRI) sample from the PREDICT‐HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] andN = 78 healthy control [HC] participants) to examine whole‐brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs‐fMRI data to obtain whole‐brain resting state networks. FNC was defined as the correlation between RSN time‐courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k‐means clustering algorithm. HDgmc individuals spent significantly more time in State‐1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State‐4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State‐1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.

     
    more » « less
  2. Background

    Cognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown.

    Purpose

    To test whether WMT affects PWH brain functional connectivity in resting‐state fMRI (rsfMRI).

    Study Type

    Prospective.

    Population

    A total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53HIV‐seronegative controls (SN, ages 49.5 ± 1.6 years, six women).

    Field Strength/Sequence

    Axial single‐shot gradient‐echo echo‐planar imaging at 3.0 T was performed at baseline (TL1), at 1‐month (TL2), and at 6‐months (TL3), after WMT.

    Assessment

    All participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training,n = 58: 28 PWH, 30 SN; nonadaptive training,n = 48: 25 PWH, 23 SN), 25 sessions over 5–8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2.

    Statistical Tests

    Two‐way analyses of variance (ANOVA) on GT metrics and two‐samplet‐tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set atP < 0.05 after false discovery rate correction.

    Results

    The ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = −0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%).

    Data Conclusion

    ICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH.

    Evidence Level

    1

    Technical Efficacy

    1

     
    more » « less
  3. Abstract Despite extensive studies detecting laminar functional magnetic resonance imaging (fMRI) signals to illustrate the canonical microcircuit, the spatiotemporal characteristics of laminar-specific information flow across cortical regions remain to be fully investigated in both evoked and resting conditions at different brain states. Here, we developed a multislice line-scanning fMRI (MS-LS) method to detect laminar fMRI signals in adjacent cortical regions with high spatial (50 μm) and temporal resolution (100 ms) in anesthetized rats. Across different trials, we detected either laminar-specific positive or negative blood-oxygen-level-dependent (BOLD) responses in the surrounding cortical region adjacent to the most activated cortex under the evoked condition. Specifically, in contrast to typical Layer (L) 4 correlation across different regions due to the thalamocortical projections for trials with positive BOLD, a strong correlation pattern specific in L2/3 was detected for trials with negative BOLD in adjacent regions, which indicated brain state-dependent laminar-fMRI responses based on corticocortical interaction. Also, in resting-state (rs-) fMRI study, robust lag time differences in L2/3, 4, and 5 across multiple cortices represented the low-frequency rs-fMRI signal propagation from caudal to rostral slices. In summary, our study provided a unique laminar fMRI mapping scheme to better characterize trial-specific intra- and inter-laminar functional connectivity in evoked and resting-state MS-LS. 
    more » « less
  4. Abstract BACKGROUND

    Early discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency.

    METHODS

    Our research is based on resting‐state electroencephalography (EEG) and the current dataset includes 137 consensus‐diagnosed, community‐dwelling Black Americans (ages 60–90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time‐varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity‐based score.

    RESULTS

    The leave‐one‐out cross‐validation accuracy is 91.97% and 3‐fold accuracy is 91.17%. The 9 to 18 months’ progression trend prediction accuracy over an availability‐limited subset sample is 84.61%.

    CONCLUSION

    The EEG‐based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur.

     
    more » « less
  5. Abstract

    The increasing incidence of age‐related comorbidities in people with HIV (PWH) has led to accelerated aging theories. Functional neuroimaging research, including functional connectivity (FC) using resting‐state functional magnetic resonance imaging (rs‐fMRI), has identified neural aberrations related to HIV infection. Yet little is known about the relationship between aging and resting‐state FC in PWH. This study included 86 virally suppressed PWH and 99 demographically matched controls spanning 22–72 years old who underwent rs‐fMRI. The independent and interactive effects of HIV and aging on FC were investigated both within‐ and between‐network using a 7‐network atlas. The relationship between HIV‐related cognitive deficits and FC was also examined. We also conducted network‐based statistical analyses using a brain anatomical atlas (n = 512 regions) to ensure similar results across independent approaches. We found independent effects of age and HIV in between‐network FC. The age‐related increases in FC were widespread, while PWH displayed further increases above and beyond aging, particularly between‐network FC of the default‐mode and executive control networks. The results were overall similar using the regional approach. Since both HIV infection and aging are associated with independent increases in between‐network FC, HIV infection may be associated with a reorganization of the major brain networks and their functional interactions in a manner similar to aging.

     
    more » « less