skip to main content


Title: Afrotropics on the wing: phylogenomics and historical biogeography of awl and policeman skippers
Abstract

The Old‐World Tropics encompass many unique biomes and associated biotas shaped by drastic climate and geological changes throughout the Cenozoic. Disjunct distributions of clades between the Afrotropics and the Oriental regions are testament to these changes. Awl and policeman skippers (Hesperiidae: Coeliadinae) are disjunctly distributed with some genera endemic to the Afrotropics and others restricted to the Oriental and Australian regions. We reconstruct the phylogeny of these butterflies using target exon capture phylogenomics. We also generate a dated framework for this clade that uses the putatively oldest known butterfly fossil to estimate the historical biogeography of Coeliadinae using a model‐based approach. We infer a stable and robust phylogeny for the subfamily, with all but one Afrotropical lineage forming a derived clade. The African genusPyrrhiadessyn. nov.is placed in synonymy withCoeliadesto accommodate the new phylogeny. Our comparative dating exercise casts doubt on the assignment of the fossilProtocoeliades kristensenias a derived Coeliadinae and suggests, along with our biogeographic estimation, a split of Coeliadinae from the rest of skippers in the Palaeoceneca. 70 million years ago. The origin of crown Coeliadinae skippers is estimated in Indomalaya during the late Eoceneca. 36 million years ago, with subsequent Oligocene colonisation events toward the Australian region and the Afrotropics. Colonisation of the Afrotropics from the Indian region occurred during climatic transition, associated biome shifts, and the closure of the Tethys Ocean, which likely allowed geodispersal through the Arabian Peninsula. The current disjunct distribution of Coeliadinae in the Old World Tropics may result from the emergence of savannahs in the Miocene that progressively replaced woodlands and forests in the Arabian Peninsula and western Asia. Coeliadinae skippers are almost exclusively dicot feeders and were likely extirpated as grasslands became dominant, resulting in the present‐day disjunct distribution of these butterflies.

 
more » « less
NSF-PAR ID:
10454601
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Systematic Entomology
Volume:
46
Issue:
1
ISSN:
0307-6970
Page Range / eLocation ID:
p. 172-185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The origin of taxa presenting a disjunct distribution between Africa and Asia has puzzled biogeographers for more than a century. This biogeographic pattern has been hypothesized to be the result of transoceanic long‐distance dispersal, Oligocene dispersal through forested corridors, Miocene dispersal through the Arabian Peninsula or passive dispersal on the rifting Indian plate. However, it has often been difficult to pinpoint the mechanisms at play. We investigate biotic exchange between the Afrotropics and the Oriental region during the Cenozoic, a period in which geological changes altered landmass connectivity. We use Baorini skippers (Lepidoptera, Hesperiidae) as a model, a widespread clade of butterflies in the Old World tropics with a disjunct distribution between the Afrotropics and the Oriental region. We use anchored phylogenomics to infer a robust evolutionary tree for Baorini skippers and estimate divergence times and ancestral ranges to test biogeographic hypotheses. Our phylogenomic tree recovers strongly supported relationships for Baorini skippers and clarifies the systematics of the tribe. Dating analyses suggest that these butterflies originated in the Oriental region, Greater Sunda Islands, and the Philippines in the early Miocenec. 23 Ma. Baorini skippers dispersed from the Oriental region towards Africa at least five times in the past 20 Ma. These butterflies colonized the Afrotropics primarily through trans‐Arabian geodispersal after the closure of the Tethyan seaway in the mid‐Miocene. Range expansion from the Oriental region towards the African continent probably occurred via theGomphotheriumland bridge through the Arabian Peninsula. Alternative scenarios invoking long‐distance dispersal and vicariance are not supported. The Miocene climate change and biome shift from forested areas to grasslands possibly facilitated geodispersal in this clade of butterflies.

     
    more » « less
  2. Abstract

    Skippers are a species rich and widespread group of butterflies with evolutionary patterns and processes largely unstudied despite some recent efforts. Among Hesperiidae, the subfamily Heteropterinae is a moderately diverse clade comprising ca. 200 species distributed from North to South America and from Africa to the Palearctic region. While some regions are species rich, others are far less diverse. Using anchored phylogenomics, we infer a robust timetree and estimate ancestral ranges to understand the biogeographic history of these skippers. Inferences based on up to 383 exons recover a robust backbone for the subfamily along with the monophyly of all genera. Bayesian divergence time estimates suggest an origin of Heteropterinae in the late Eocene, ca. 40 million years ago. Maximum likelihood ancestral range estimates indicate an origin of the group in the New World. The eastern Palearctic was likely colonized via a Beringian route and a reverse colonization event resulted in two independent and extant American clades. We estimate a vicariant event between Central and South America that significantly predates estimates of the proto‐Caribbean seaway closure, indicating active overwater dispersal in the Oligocene. The colonization of Africa from the east Palearctic is synchronous with the closure of the Tethys Ocean, while the colonization of Madagascar appears to be comparatively recent. Our results shed light on the systematics and biogeography of Heteropterinae skippers and unveil the evolutionary history of a new leaf in the skipper tree‐of‐life.

     
    more » « less
  3. Abstract

    The water scavenger beetle subfamily Acidocerinae is a cosmopolitan, ecologically diverse lineage with more than 500 described species whose morphology and classification are poorly understood. We present the first phylogenetic analyses of the subfamily inferred from five loci (18S, 28S, H3, CAD, COI). We used secondary calibrations to estimate divergence times and employ this phylogeny to revise the classification and examine the historical biogeography of this lineage. Most genera are resolved as reciprocally monophyletic, with several exceptions:Horelophopsissyn. n.is recovered as a derived lineage of and placed in synonymy withAgraphydrus. The large genusHelochares, as well as its primary constituent subgeneraHelochares(s. str.) andHydrobaticusare found to be polyphyletic.Batocharesstat. n.andSindolusstat. rev.are elevated from subgenera ofHelocharesto generic rank.Crephelocharesstat. rev.is removed from synonymy withChasmogenus. We found that the crown Acidocerinae date to the mid‐Jurassic in South America + Africa (West Gondwana). South America and Africa remain important areas of endemism throughout the evolution of the lineage and are resolved either individually or in combination as the ancestral area for all but one clade that is older than 90 million years ago. Six of the seven lineages occurring in South America diverged more than 100 million years ago and are endemic to the region, suggesting the Neotropical acidocerine fauna became isolated following the breakup of West Gondwana. Conversely, lineages found on other Gondwanan fragments (India, Madagascar, Australia) are comparatively young and derived, with all being Cenozoic in age. The few taxa that occur in North America today are all the result of recent Cenozoic dispersal from South America, although North America may have played an important role as an ancestral area in the Mesozoic.

     
    more » « less
  4. Abstract

    Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto‐predaceousLepidochrysopsbutterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time‐calibrated phylogeny forLepidochrysopsand its closest, non‐parasitic relatives in theEuchrysopssection (Poloyommatini). We estimated ancestral areas across the phylogeny with process‐based biogeographical models and diversification rates relying on time‐variable and clade‐heterogeneous birth‐death models. TheEuchrysopssection originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non‐parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto‐predaceousLepidochrysopslineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of theEuchrysopssection, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto‐predaceous life history in species ofLepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.

     
    more » « less
  5. Phylogenetic evidence suggests that platyrrhine (or New World) monkeys and caviomorph rodents of the Western Hemisphere derive from source groups from the Eocene of Afro-Arabia, a landmass that was ~1500 to 2000 kilometers east of South America during the late Paleogene. Here, we report evidence for a third mammalian lineage of African origin in the Paleogene of South America—a newly discovered genus and species of parapithecid anthropoid primate from Santa Rosa in Amazonian Perú. Bayesian clock–based phylogenetic analysis nests this genus (Ucayalipithecus) deep within the otherwise Afro-Arabian clade Parapithecoidea and indicates that transatlantic rafting of the lineage leading toUcayalipithecuslikely took place between ~35 and ~32 million years ago, a dispersal window that includes the major worldwide drop in sea level that occurred near the Eocene-Oligocene boundary.

     
    more » « less