skip to main content


Title: A temporal hierarchy underpins the transcription factor–DNA interactome of the maize UPR
Summary

Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large‐scale systems‐level analysis of the protein–DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high‐throughput enhanced yeast one‐hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety ofcis‐regulatory elements (CREs) in ER stress‐responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription‐regulatory mechanisms in the stress responses and crop improvement.

 
more » « less
NSF-PAR ID:
10454603
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
105
Issue:
1
ISSN:
0960-7412
Page Range / eLocation ID:
p. 254-270
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified threeBiPhomologs in theSolanum tuberosum(potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed thatStBiP1andStBiP2grouped withAtBiP2, whereasStBiP3grouped withAtBiP3. While the protein sequences and folding structures are highly similar, theseStBiPsare distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and ArabidopsisBiP1andBiP2promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereasBiP3promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture ofBiPpromoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.

     
    more » « less
  2. Abstract

    We employed several algorithms with high efficacy to analyze the public transcriptomic data, aiming to identify key transcription factors (TFs) that regulate regeneration inArabidopsis thaliana. Initially, we utilized CollaborativeNet, also known as TF-Cluster, to construct a collaborative network of all TFs, which was subsequently decomposed into many subnetworks using the Triple-Link and Compound Spring Embedder (CoSE) algorithms. Functional analysis of these subnetworks led to the identification of nine subnetworks closely associated with regeneration. We further applied principal component analysis and gene ontology (GO) enrichment analysis to reduce the subnetworks from nine to three, namely subnetworks 1, 12, and 17. Searching for TF-binding sites in the promoters of the co-expressed and co-regulated (CCGs) genes of all TFs in these three subnetworks and Triple-Gene Mutual Interaction analysis of TFs in these three subnetworks with the CCGs involved in regeneration enabled us to rank the TFs in each subnetwork. Finally, six potential candidate TFs—WOX9A, LEC2, PGA37, WIP5, PEI1, and AIL1 from subnetwork 1—were identified, and their roles in somatic embryogenesis (GO:0010262) and regeneration (GO:0031099) were discussed, so were the TFs in Subnetwork 12 and 17 associated with regeneration. The TFs identified were also assessed using the CIS-BP database and Expression Atlas. Our analyses suggest some novel TFs that may have regulatory roles in regeneration and embryogenesis and provide valuable data and insights into the regulatory mechanisms related to regeneration. The tools and the procedures used here are instrumental for analyzing high-throughput transcriptomic data and advancing our understanding of the regulation of various biological processes of interest.

     
    more » « less
  3. Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs. 
    more » « less
  4. Abstract

    Isoprene has recently been proposed to be a signaling molecule that can enhance tolerance of both biotic and abiotic stress. Not all plants make isoprene, but all plants tested to date respond to isoprene. We hypothesized that isoprene interacts with existing signaling pathways rather than requiring novel mechanisms for its effect on plants. We analyzed the cis‐regulatory elements (CREs) in promoters of isoprene‐responsive genes and the corresponding transcription factors binding these promoter elements to obtain clues about the transcription factors and other proteins involved in isoprene signaling. Promoter regions of isoprene‐responsive genes were characterized using the Arabidopsis cis‐regulatory element database. CREs bind ARR1, Dof, DPBF, bHLH112, GATA factors, GT‐1, MYB, and WRKY transcription factors, and light‐responsive elements were overrepresented in promoters of isoprene‐responsive genes; CBF‐, HSF‐, WUS‐binding motifs were underrepresented. Transcription factors corresponding to CREs overrepresented in promoters of isoprene‐responsive genes were mainly those important for stress responses: drought‐, salt/osmotic‐, oxidative‐, herbivory/wounding and pathogen‐stress. More than half of the isoprene‐responsive genes contained at least one binding site for TFs of the class IV (homeodomain leucine zipper) HD‐ZIP family, such as GL2, ATML1, PDF2, HDG11, ATHB17. While the HD‐zipper‐loop‐zipper (ZLZ) domain binds to the L1 box of the promoter region, a special domain called the steroidogenic acute regulatory protein‐related lipid transfer, or START domain, can bind ligands such as fatty acids (e.g., linolenic and linoleic acid). We tested whether isoprene might bind in such a START domain. Molecular simulations and modeling to test interactions between isoprene and a class IV HD‐ZIP family START‐domain‐containing protein were carried out. Without membrane penetration by the HDG11 START domain, isoprene within the lipid bilayer was inaccessible to this domain, preventing protein interactions with membrane bound isoprene. The cross‐talk between isoprene‐mediated signaling and other growth regulator and stress signaling pathways, in terms of common CREs and transcription factors could enhance the stability of the isoprene emission trait when it evolves in a plant but so far it has not been possible to say what how isoprene is sensed to initiate signaling responses.

     
    more » « less
  5. ABSTRACT Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum . We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. 
    more » « less