skip to main content

Title: Self‐Stratifying Porous Silicones with Enhanced Liquid Infusion and Protective Skin Layer for Biofouling Prevention

Liquid‐infused silicones are a promising solution for common surface adhesion problems, such as ice accumulation and biofilm formation, yet they generally lack the tunability, mechanical durability and/or longevity essential for industrial applications. Self‐stratifying porous silicones (SPS) infused with compatible silicone oil are developed as a passive strategy to address these shortcomings. Through emulsion templating, porosity is formed in the bulk polymer, providing increased free volume for oil infusion, while a non‐porous skin layer is formed at the surface. The bulk porosity and pore size distribution of SPS are independently controlled by varying water and surfactant concentration respectively, leading to a higher volume of oil infusion and improved oil retention relative to an unmodified silicone. Despite a higher oil loading and bulk porosity, the skin layer provides liquid‐infused SPS with a comparable surface elasticity to liquid‐infused silicones. The potential of liquid‐infused SPS as a nontoxic fouling release coating for marine applications is demonstrated using laboratory assays against a variety of soft and hard fouling organisms.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report the design of ‘slippery’ nanoemulsion-infused porous surfaces (SNIPS). These materials are strongly anti-fouling to a broad range of substances, including microorganisms. Infusion with water-in-oil nanoemulsions also endows these slippery coatings with the ability to host and control or sustain the release of water-soluble agents, including polymers, peptides, and nucleic acids, opening the door to new applications of liquid-infused materials. 
    more » « less
  2. null (Ed.)

    Boiling heat transfer serves as an efficient mechanism to dissipate large amounts of thermal energy due to the latent heat of phase change. In academic studies, typically ultra-pure deionized (DI) water is used to avoid contamination. However, in industrial and commercial settings, the working fluid might be contaminated with sediments, dust, salts, or organic matter. Long-term boiling processes in non-DI water cause substantial build-up of a stable layer of deposit that dramatically reduces the heat transfer coefficient. Therefore, heating applications in a contaminated medium demand strategies to prevent such fouling. Here, we studied the use of lubricant infused surfaces (LIS) and their ability to possibly minimize the deposition of calcium sulfate. Aluminum samples were infused with Krytox 102 oil and the heat transfer coefficient was investigated at a vertical and horizontal surface orientation. Fouling effects were introduced by pool boiling for 7.5 hours in a 6.97 mM calcium sulfate solution at constant heat flux. Heat flux curves for both plain aluminum and LIS were calibrated before contamination. Initially, the LIS was unable to support a nucleate phase and transitioned directly from liquid convection to film boiling heat transfer. Upon partial degradation of the lubricant layer during long-run experiments, nucleate boiling ensued. Over 7.5 hours, the heat transfer coefficient of each sample (Al and LIS) degraded between 5.4% and 7.9% with no significant correlation with either lubricant treatment or surface orientation. Post boiling profilometry was conducted on each sample to characterize the thickness and distribution of the calcium sulfate layer. In these experiments, the plain aluminum surface outperformed the LIS at both orientations in minimizing calcium layer thickness. The LIS oriented vertically outperformed the LIS oriented horizontally.

    more » « less
  3. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance are largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) the porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions. 
    more » « less
  4. null (Ed.)
    Abstract Mangrove swamps are extremely productive ecosystems providing many ecological services in coastal regions. The hydrodynamic interactions of mangrove roots and water flow have been proposed as a key element to mitigate erosion. Several studies reveal that precise prediction of the morphological evolution of coastal areas, in the face of global warming and the consequent sea-level rise, requires an understanding of interactions between root porosity (the fraction of the volume of void space over the total volume), water flows, and sediment transport. Water flows around the mangrove prop roots create a complex energetic process that mixes up sediments and generates a depositional region posterior to the roots. In this work, we investigated the boundary layer behind permeable arrays of cylinders (patch) that represent the mangrove roots to explore the impact of patch porosity on the onset of sediment transport. The flow measurements were performed in a vertical plane along the water depth downstream of the mangrove root models. A high-resolution Particle Image Velocimetry (PIV) was used in a flume to observe the impact of porosity on the mean flow, velocity derivatives, skin friction coefficient, and production of turbulent kinetic energy for Reynolds number of 2500 (based on patch diameter length-scale). Here, we proposed a predictive model for critical velocity for incipient motion that takes into account the mangrove roots porosity and the near-bed turbulence effect. It is found that the patch with the $$\phi =47\%$$ ϕ = 47 % porosity, has the maximum critical velocity over which the sediment transport initiates. We found the optimum porosity has the minimum sediment erosion and creates negative vorticity sources near the bed that increases the critical velocity. This signifies an optimum porosity for the onset of sediment transport consistent with the porosity of mangroves in nature. The phenomenological model is elucidated based on an analysis of the vorticity evolution equation for viscous incompressible flows. For the optimum porous patch, a sink of vorticity was formed which yielded to lower the near-bed turbulence and vorticity. The minimum velocity fluctuations were sufficient to initiate the boundary layer transition, however, the viscous dissipation dominated the turbulence production to obstruct the sediment transport. This work identified the pivotal role of mangrove root porosity in sediment transport in terms of velocity and its derivatives in wall-bounded flows. Our work also provides insight into the sediment transport and erosion processes that govern the evolution of the shapes of shorelines. 
    more » « less
  5. Abstract

    Highly elastic silicone foams, especially those with tunable properties and multifunctionality, are of great interest in numerous fields. However, the liquid nature of silicone precursors and the complicated foaming process hinder the realization of its three‐dimensional (3D) printability. Herein, a series of silicone foams with outstanding performance with regards to elasticity, wetting and sensing properties, multifunctionality, and tunability is generated by direct ink writing. Viscoelastic inks are achieved from direct dispersion of sodium chloride in a unique silicone precursor solution. The 3D‐architectured silicone rubber exhibits open‐celled trimodal porosity, which offers ultraelasticity with hyper compressibility/cycling endurance (near‐zero stress/strain loss under 90% compression or 1000 compression cycles), excellent stretchability (210% strain), and superhydrophobicity. The resulting foam is demonstrated to be multifunctional, such that it can work as an oil sorbent with super capacity (1320%) and customizable soft sensor after absorption of carbon nanotubes on the foam surface. The strategy enables tunability of mechanical strength, elasticity, stretchability, and absorbing capacity, while printing different materials together offers property gradients as an extra dimension of tunability. The first 3D printed silicone foam, which serves an important step toward its application expansion, is achieved.

    more » « less