skip to main content


Title: R2R3‐MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae)
Summary

Petal pigmentation patterning is widespread in flowering plants. The genetics of these pattern elements has been of great interest for understanding the evolution of phenotypic diversification. Here, we investigate the genetic changes responsible for the evolution of an unpigmented petal element on a colored background.

We used transcriptome analysis, gene expression assays, cosegregation in F2plants and functional tests to identify the gene(s) involved in petal coloration inClarkia gracilisssp.sonomensis.

We identified an R2R3‐MYB transcription factor (CgsMYB12) responsible for anthocyanin pigmentation of the basal region (‘cup’) in the petal ofC.gracilisssp.sonomensis. A functional mutation inCgsMYB12creates a white cup on a pink petal background. Additionally, we found that twoR2R3‐MYBgenes (CgsMYB6andCgsMYB11) are also involved in petal background pigmentation. Each of these threeR2R3‐MYBgenes exhibits a different spatiotemporal expression pattern. The functionality of theseR2R3‐MYBgenes was confirmed through stable transformation ofArabidopsis.

Distinct spatial patterns ofR2R3‐MYBexpression have created the possibility that pigmentation in different sections of the petal can evolve independently. This finding suggests that recent gene duplication has been central to the evolution of petal pigmentation patterning inC. gracilisssp.sonomensis.

 
more » « less
NSF-PAR ID:
10454664
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
New Phytologist
Volume:
229
Issue:
2
ISSN:
0028-646X
Page Range / eLocation ID:
p. 1147-1162
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Patterned leaf coloration in plants generates remarkable diversity in nature, but the underlying mechanisms remain largely unclear.

    Here, usingMedicago truncatulaleaf marking as a model, we show that the classicM. truncatulaleaf anthocyanin spot trait depends on two R2R3 MYB paralogous regulators, RED HEART1 (RH1) and RH2.

    RH1 mainly functions as an anthocyanin biosynthesis activator that specifically determines leaf marking formation depending on its C‐terminal activation motif. RH1 physically interacts with theM. truncatulabHLH protein MtTT8 and the WDR family member MtWD40‐1, and this interaction facilitates RH1 function in leaf anthocyanin marking formation. RH2 has lost transcriptional activation activity, due to a divergent C‐terminal domain, but retains the ability to interact with the same partners, MtTT8 and MtWD40‐1, as RH1, thereby acting as a competitor in the regulatory complex and exerting opposite effects. Moreover, our results demonstrate that RH1 can activate its own expression and that RH2‐mediated competition can repressRH1expression.

    Our findings reveal the molecular mechanism of the antagonistic gene paralogs RH1 and RH2 in determining anthocyanin leaf markings inM. truncatula, providing a multidimensional paralogous–antagonistic regulatory paradigm for fine‐tuning patterned pigmentation.

     
    more » « less
  2. Summary

    In this study, we investigate the genetic mechanisms responsible for the loss of anthocyanins in betalain‐pigmented Caryophyllales, considering our hypothesis of multiple transitions to betalain pigmentation.

    Utilizing transcriptomic and genomic datasets across 357 species and 31 families, we scrutinize 18 flavonoid pathway genes and six regulatory genes spanning four transitions to betalain pigmentation. We examined evidence for hypotheses of wholesale gene loss, modified gene function, altered gene expression, and degeneration of the MBW (MYB‐bHLH‐WD40) trasnscription factor complex, within betalain‐pigmented lineages.

    Our analyses reveal that most flavonoid synthesis genes remain conserved in betalain‐pigmented lineages, with the notable exception ofTT19orthologs, essential for the final step in anthocyanidin synthesis, which appear to have been repeatedly and entirely lost. Additional late‐stage flavonoid pathway genes upstream ofTT19also manifest strikingly reduced expression in betalain‐pigmented species. Additionally, we find repeated loss and alteration in the MBW transcription complex essential for canonical anthocyanin synthesis.

    Consequently, the loss and exclusion of anthocyanins in betalain‐pigmented species appear to be orchestrated through several mechanisms: loss of a key enzyme, downregulation of synthesis genes, and degeneration of regulatory complexes. These changes have occurred iteratively in Caryophyllales, often coinciding with evolutionary transitions to betalain pigmentation.

     
    more » « less
  3. Summary

    Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified bynodgenes, are the primary determinants of host specificity in the legume–Rhizobia symbiosis.

    We examined the nodulation ability ofMedicago truncatulacv Jemalong A17 andM. truncatulassp.tricyclaR108 with theSinorhizobium meliloti nodF/nodLmutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant.

    We show that thenodF/nodLmutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor‐like kinase gene in R108,LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with thenodF/nodLmutant. We found thatLYK2bisis involved in nodulation by mutants producing nonO‐acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, naturalS. melilotiandS. medicaestrains tested requireLYK2bisfor efficient nodulation of R108.

    Our findings reveal that a newly evolved gene in R108,LYK2bis, extends nodulation specificity to mutants producing nonO‐acetylated NFs and is important for nodulation by many naturalSinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.

     
    more » « less
  4. Summary

    All aerial epidermal cells in land plants are covered by the cuticle, an extracellular hydrophobic layer that provides protection against abiotic and biotic stresses and prevents organ fusion during development.

    Genetic and morphological analysis of the classic maizeadherent1(ad1) mutant was combined with genome‐wide binding analysis of the maize MYB transcription factor FUSED LEAVES1 (FDL1), coupled with transcriptional profiling offdl1mutants.

    We show thatAD1encodes an epidermally‐expressed 3‐KETOACYL‐CoA SYNTHASE (KCS) belonging to a functionally uncharacterized clade of KCS enzymes involved in cuticular wax biosynthesis. Wax analysis inad1mutants indicates thatAD1functions in the formation of very‐long‐chain wax components. We demonstrate that FDL1 directly binds to CCAACC core motifs present inAD1regulatory regions to activate its expression. Over 2000 additional target genes of FDL1, including many involved in cuticle formation, drought response and cell wall organization, were also identified.

    Our results identify a regulatory module of cuticle biosynthesis in maize that is conserved across monocots and eudicots, and highlight previously undescribed factors in lipid metabolism, transport and signaling that coordinate organ development and cuticle formation.

     
    more » « less
  5. Bomblies, K (Ed.)
    Abstract Much of the visual diversity of angiosperms is due to the frequent evolution of novel pigmentation patterns in flowers. The gene network responsible for anthocyanin pigmentation, in particular, has become a model for investigating how genetic changes give rise to phenotypic innovation. In the monkeyflower genus Mimulus, an evolutionarily recent gain of petal lobe anthocyanin pigmentation in M. luteus var. variegatus was previously mapped to genomic region pla2. Here, we use sequence and expression analysis, followed by transgenic manipulation of gene expression, to identify MYB5a—orthologous to the NEGAN transcriptional activator from M. lewisii—as the gene responsible for the transition to anthocyanin-pigmented petals in M. l. variegatus. In other monkeyflower taxa, MYB5a/NEGAN is part of a reaction-diffusion network that produces semi-repeating spotting patterns, such as the array of spots in the nectar guides of both M. lewisii and M. guttatus. Its co-option for the evolution of an apparently non-patterned trait—the solid petal lobe pigmentation of M. l. variegatus—illustrates how reaction-diffusion can contribute to evolutionary novelty in non-obvious ways. Transcriptome sequencing of a MYB5a RNAi line of M. l. variegatus reveals that this genetically simple change, which we hypothesize to be a regulatory mutation in cis to MYB5a, has cascading effects on gene expression, not only on the enzyme-encoding genes traditionally thought of as the targets of MYB5a but also on all of its known partners in the anthocyanin regulatory network. 
    more » « less