Abstract Pesticide pollution can alter parasite transmission, but scientists are unaware if effects of pesticides on parasite exposure and host susceptibility (i.e. infection risk given exposure) can be generalised within a community context. Using replicated temperate pond communities, we evaluate effects of 12 pesticides, nested in four pesticide classes (chloroacetanilides, triazines, carbamates organophosphates) and two pesticide types (herbicides, insecticides) applied at standardised environmental concentrations on larval amphibian exposure and susceptibility to trematode parasites. Most of the variation in exposure and susceptibility occurred at the level of pesticide class and type, not individual compounds. The organophosphate class of insecticides increased snail abundance (first intermediate host) and thus trematode exposure by increasing mortality of snail predators (top–down mechanism). While a similar pattern in snail abundance and trematode exposure was observed with triazine herbicides, this effect was driven by increases in snail resources (periphytic algae, bottom–up mechanism). Additionally, herbicides indirectly increased host susceptibility and trematode infections by (1) increasing time spent in susceptible early developmental stages and (2) suppressing tadpole immunity. Understanding generalisable effects associated with contaminant class and type on transmission is critical in reducing complexities in predicting disease dynamics in at‐risk host populations.
more »
« less
Disease's hidden death toll: Using parasite aggregation patterns to quantify landscape‐level host mortality in a wildlife system
Abstract World‐wide, infectious diseases represent a major source of mortality in humans and livestock. For wildlife populations, disease‐induced mortality is likely even greater, but remains notoriously difficult to estimate—especially for endemic infections. Approaches for quantifying wildlife mortality due to endemic infections have historically been limited by an inability to directly observe wildlife mortality in nature.Here we address a question that can rarely be answered for endemic pathogens of wildlife: what are the population‐ and landscape‐level effects of infection on host mortality? We combined laboratory experiments, extensive field data and novel mathematical models to indirectly estimate the magnitude of mortality induced by an endemic, virulent trematode parasite (Ribeiroia ondatrae) on hundreds of amphibian populations spanning four native species.We developed a flexible statistical model that uses patterns of aggregation in parasite abundance to infer host mortality. Our model improves on previous approaches for inferring host mortality from parasite abundance data by (i) relaxing restrictive assumptions on the timing of host mortality and sampling, (ii) placing all mortality inference within a Bayesian framework to better quantify uncertainty and (iii) accommodating data from laboratory experiments and field sampling to allow for estimates and comparisons of mortality within and among host populations.Applying our approach to 301 amphibian populations, we found that trematode infection was associated with an average of between 13% and 40% population‐level mortality. For three of the four amphibian species, our models predicted that some populations experienced >90% mortality due to infection, leading to mortality of thousands of amphibian larvae within a pond. At the landscape scale, the total number of amphibians predicted to succumb to infection was driven by a few high mortality sites, with fewer than 20% of sites contributing to greater than 80% of amphibian mortality on the landscape.The mortality estimates in this study provide a rare glimpse into the magnitude of effects that endemic parasites can have on wildlife populations and our theoretical framework for indirectly inferring parasite‐induced mortality can be applied to other host–parasite systems to help reveal the hidden death toll of pathogens on wildlife hosts.
more »
« less
- Award ID(s):
- 1754171
- PAR ID:
- 10454667
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 89
- Issue:
- 12
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- p. 2876-2887
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The relationship between infection prevalence and host age is informative because it can reveal processes underlying disease dynamics. Most prior work has assumed that age‐prevalence curves are shaped by infection rates, host immunity and/or infection‐induced mortality. Interactions between parasites within a host have largely been overlooked as a source of variation in age‐prevalence curves.We used field survey data and models to examine the role of interspecific interactions between parasites in shaping age‐prevalence curves. The empirical dataset included quantification of parasite infection prevalence for eight co‐occurring trematodes in over 15,000 snail hosts. We characterized age‐prevalence curves for each taxon, examined how they changed over space in relation to co‐occurring trematodes and tested whether the shape of the curves aligned with expectations for the frequencies of coinfections by two taxa in the same host. The models explored scenarios that included negative interspecific interactions between parasites, variation in the force‐of‐infection (FOI) and infection‐induced mortality that varied with host age, which were mechanisms hypothesized to be important in the empirical dataset.In the empirical dataset, four trematode parasites had monotonic increasing age‐prevalence curves and four had unimodal age‐prevalence curves. Some of the curves remained consistent in shape in relation to the prevalence of other potentially interacting trematodes, while some shifted from unimodal to monotonic increasing, suggesting release from negative interspecific interactions. The most common taxa with monotonic increasing curves had lower co‐infection frequencies than expected, suggesting they were competitively dominant. Taxa with unimodal curves had coinfection frequencies that were closer to those expected by chance.The model showed that negative interspecific interactions between parasites can cause a unimodal age‐prevalence curve in the subordinate taxon. Increases in the FOI and/or infection‐induced mortality of the dominant taxon cause shifts in the peak prevalence of the subordinate taxon to a younger host age. Infection‐induced mortality that increased with host age was the only scenario that caused a unimodal curve in the dominant taxon.Results indicated that negative interspecific interactions between parasites contributed to variation in the shape of age‐prevalence curves across parasite taxa and support the growing importance of incorporating interactions between parasites in explaining population‐level patterns of host infection over space and time. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Understanding parasite transmission in communities requires knowledge of each species' capacity to support transmission. This property, ‘competence’, is a critical currency for modelling transmission under community change and for testing diversity–disease theory. Despite the central role of competence in disease ecology, we lack a clear understanding of the factors that generate competence and drive its variation.We developed novel conceptual and quantitative approaches to systematically quantify competence for a multi‐host, multi‐parasite community. We applied our framework to an extensive dataset: five amphibian host species exposed to four parasitic trematode species across five ecologically realistic exposure doses. Together, this experimental design captured 20 host–parasite interactions while integrating important information on variation in parasite exposure. Using experimental infection assays, we measured multiple components of the infection process and combined them to produce competence estimates for each interaction.With directly estimated competence values, we asked which components of the infection process best explained variation in competence: barrier resistance (the initial fraction of administered parasites blocked from infecting a host), internal clearance (the fraction of established parasites lost over time) or pre‐transmission mortality (the probability of host death prior to transmission). We found that variation in competence among the 20 interactions was best explained by differences in barrier resistance and pre‐transmission mortality, underscoring the importance of host resistance and parasite pathogenicity in shaping competence.We also produced dose‐integrated estimates of competence that incorporated natural variation in exposure to address questions on the basis and extent of variation in competence. We found strong signals that host species identity shaped competence variation (as opposed to parasite species identity). While variation in infection outcomes across hosts, parasites, individuals and doses was considerable, individual heterogeneity was limited compared to among‐species differences. This finding highlights the robustness of our competence estimates and suggests that species‐level values may be strong predictors for community‐level transmission in natural systems.Competence emerges from distinct underlying processes and can have strong species‐level characteristics; thus, this property has great potential for linking mechanisms of infection to epidemiological patterns. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
-
Abstract Heterogeneities in infections among host populations may arise through differences in environmental conditions through two mechanisms. First, environmental conditions may alter host exposure to pathogens via effects on survival. Second, environmental conditions may alter host susceptibility, making infection more or less likely if contact between a host and pathogen occurs. Further, host susceptibility might be altered through acquired resistance, which hosts can develop, in some systems, through exposure to dead or decaying pathogens and their metabolites. Environmental conditions may alter the rates of pathogen decomposition, influencing the likelihood of hosts developing acquired resistance.The present study primarily tests how environmental context influences the relative contributions of pathogen survival and per capita transmission on host infection prevalence using the amphibian chytrid fungus (Batrachochytrium dendrobatidis; Bd) as a model system. Secondarily, we evaluate how environmental context influences the decomposition of Bd because previous studies have shown that dead Bd and its metabolites can illicit acquired resistance in hosts. We conducted Bd survival and infection experiments and then fit models to discern how Bd mortality, decomposition and per capita transmission rates vary among water sources [e.g. artificial spring water (ASW) or water from three ponds].We found that infection prevalence differed among water sources, which was driven by differences in mortality rates of Bd, rather than differences in per capita transmission rates. Bd mortality rates varied among pond water treatments and were lower in ASW compared to pond water.These results suggest that variation in Bd infection dynamics could be a function of environmental factors in waterbodies that result in differences in exposure of hosts to live Bd. In contrast to the persistence of live Bd, we found that the rates of decomposition of dead Bd did not vary among water sources, which may suggest that exposure of hosts to dead Bd or its metabolites might not commonly vary among nearby sites. Ultimately, a mechanistic understanding of the environmental dependence of free‐living pathogens could lead to a deeper understanding of the patterns of outbreak heterogeneity, which could inform surveillance and management strategies.more » « less
-
Abstract Predation on parasites is a common interaction with multiple, concurrent outcomes. Free‐living stages of parasites can comprise a large portion of some predators' diets and may be important resources for population growth. Predation can also reduce the density of infectious agents in an ecosystem, with resultant decreases in infection rates. While predator–parasite interactions likely vary with parasite transmission strategy, few studies have examined how variation in transmission mode influences contact rates with predators and the associated changes in consumption risk.To understand how transmission mode mediates predator–parasite interactions, we examined associations between an oligochaete predatorChaetogaster limnaeithat lives commensally on freshwater snails and nine trematode taxa that infect snails.Chaetogasteris hypothesized to consume active (i.e. mobile), free‐living stages of trematodes that infect snails (miracidia), but not the passive infectious stages (eggs); it could thus differentially affect transmission and infection prevalence of parasites, including those with medical or veterinary importance. Alternatively, when infection does occur,Chaetogastercan consume and respond numerically to free‐living trematode stages released from infected snails (cercariae). These two processes lead to contrasting predictions about whetherChaetogasterand trematode infection of snails correlate negatively (‘protective predation’) or positively (‘predator augmentation’).Here, we tested how parasite transmission mode affectedChaetogaster–trematode relationships using data from 20,759 snails collected across 4 years from natural ponds in California. Based on generalized linear mixed modelling, snails with moreChaetogasterwere less likely to be infected by trematodes that rely on active transmission. Conversely, infections by trematodes with passive infectious stages were positively associated with per‐snailChaetogasterabundance.Our results suggest that trematode transmission mode mediates the net outcome of predation on parasites. For trematodes with active infectious stages, predatoryChaetogasterlimited the risk of snail infection and its subsequent pathology (i.e. castration). For taxa with passive infectious stages, no such protective effect was observed. Rather, infected snails were associated with higherChaetogasterabundance, likely owing to the resource subsidy provided by cercariae. These findings highlight the ecological and epidemiological importance of predation on free‐living stages while underscoring the influence of parasite life history in shaping such interactions.more » « less
An official website of the United States government
