Due to its inbuilt ability to release biocompatible materials encapsulating living cells in a predefined location, 3D bioprinting is a promising technique for regenerating patient-specific tissues and organs. Among various 3D bioprinting techniques, extrusion-based 3D bio-printing ensures a higher percentage of cell release, ensuring suitable external and internal scaffold architectures. Scaffold architecture is mainly defined by filament geometry and width. A systematic selection of a set of process parameters, such as nozzle diameter, print speed, print distance, extrusion pressure, and material viscosity, can control the filament geometry and width, eventually confirming the user-defined scaffold porosity. For example, carefully selecting two sets of process parameters can result in a similar filament width. However, the lack of availability of sufficient analytical relations between printing process parameters and filament width creates a barrier to achieving defined scaffold architectures with available resources. In this paper, filament width was determined using an image processing technique and an analytical relationship was developed, including various process parameters to maintain defined filament width variation for different hydrogels within an acceptable range to confirm the overall geometric fidelity of the scaffold. Proposed analytical relations can help achieve defined scaffold architectures with available resources.
Bioprinting is a powerful technology with the potential to transform medical device manufacturing, organ replacement, and the treatment of diseases and physiologic malformations. However, current bioprinters are unable to reliably print the fundamental unit of all living things, single cells. A high‐definition single‐cell printing, a novel microfluidic technology, is presented here that can accurately print single cells from a mixture of multiple candidates. The bioprinter employs a highly miniaturized microfluidic sorter to deterministically select single cells of interest for printing, achieving an accuracy of ≈10 µm and speed of ≈100 Hz. This approach is demonstrated by fabricating intricate cell patterns with pre‐defined features through selective single‐cell printing. The approach is used to synthesize well‐defined spheroids with controlled composition and morphology. The speed, accuracy, and flexibility of the approach will advance bioprinting to enable new studies in organoid science, tissue engineering, and spatially targeted cell therapies.
more » « less- NSF-PAR ID:
- 10454700
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 32
- Issue:
- 52
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Three-dimensional (3D) bioprinting precisely deposits picolitre bioink to fabricate functional tissues and organs in a layer-by-layer manner. The bioink used for 3D bioprinting incorporates living cells. During printing, cells suspended in the bioink sediment to form cell aggregates through cell-cell interaction. The formation of cell aggregates due to cell sedimentation have been widely recognized as a significant challenge to affect the printing reliability and quality. This study has incorporated the active circulation into the bioink reservoir to mitigate cell sedimentation and aggregation. Force and velocity analysis were performed, and a circulation model has been proposed based on iteration algorithm with the time step for each divided region. It has been found that (a) the comparison of the cell sedimentation and aggregation with and without the active bioink circulation has demonstrated high effectiveness of active circulation to mitigate cell sedimentation and aggregation for the bioink with both a low cell concentration of 1 × 106cells ml−1and a high cell concentration of 5 × 106cells ml−1; and (b) the effect of circulation flow rate on cell sedimentation and aggregation has been investigated, showing that large flow rate results in slow increments in effectiveness. Besides, the predicted mitigation effectiveness percentages on cell sedimentation by the circulation model generally agrees well with the experimental results. In addition, the cell viability assessment at the recommended maximum flow rate of 0.5 ml min−1has demonstrated negligible cell damage due to the circulation. The proposed active circulation approach is an effective and efficient approach with superior performance in mitigating cell sedimentation and aggregation, and the resulting knowledge is easily applicable to other 3D bioprinting techniques significantly improving printing reliability and quality in 3D bioprinting.
-
Compensating the cell-induced light scattering effect in light-based bioprinting using deep learningAbstract Digital light processing (DLP)-based three-dimensional (3D) printing technology has the advantages of speed and precision comparing with other 3D printing technologies like extrusion-based 3D printing. Therefore, it is a promising biomaterial fabrication technique for tissue engineering and regenerative medicine. When printing cell-laden biomaterials, one challenge of DLP-based bioprinting is the light scattering effect of the cells in the bioink, and therefore induce unpredictable effects on the photopolymerization process. In consequence, the DLP-based bioprinting requires extra trial-and-error efforts for parameters optimization for each specific printable structure to compensate the scattering effects induced by cells, which is often difficult and time-consuming for a machine operator. Such trial-and-error style optimization for each different structure is also very wasteful for those expensive biomaterials and cell lines. Here, we use machine learning to learn from a few trial sample printings and automatically provide printer the optimal parameters to compensate the cell-induced scattering effects. We employ a deep learning method with a learning-based data augmentation which only requires a small amount of training data. After learning from the data, the algorithm can automatically generate the printer parameters to compensate the scattering effects. Our method shows strong improvement in the intra-layer printing resolution for bioprinting, which can be further extended to solve the light scattering problems in multilayer 3D bioprinting processes.more » « less
-
Abstract Granular hydrogels composed of hydrogel microparticles are promising candidates for 3D bioprinting due to their ability to protect encapsulated cells. However, to achieve high print fidelity, hydrogel microparticles need to jam to exhibit shear‐thinning characteristics, which is crucial for 3D printing. Unfortunately, this overpacking can significantly impact cell viability, thereby negating the primary advantage of using hydrogel microparticles to shield cells from shear forces. To overcome this challenge, a novel solution: a biphasic, granular colloidal bioink designed to optimize cell viability and printing fidelity is introduced. The biphasic ink consists of cell‐laden polyethylene glycol (PEG) hydrogel microparticles embedded in a continuous gelatin methacryloyl (GelMA)‐nanosilicate colloidal network. Here, it is demonstrated that this biphasic bioink offers outstanding rheological properties, print fidelity, and structural stability. Furthermore, its utility for engineering complex tissues with multiple cell types and heterogeneous microenvironments is demonstrated, by incorporating β‐islet cells into the PEG microparticles and endothelial cells in the GelMA‐nanosilicate colloidal network. Using this approach, it is possible to induce cell patterning, enhance vascularization, and direct cellular function. The proposed biphasic bioink holds significant potential for numerous emerging biomedical applications, including tissue engineering and disease modeling.
-
Abstract Recently, 3D bioprinting techniques have been broadly recognized as a promising tool to fabricate functional tissues and organs. The bioink used for 3D bioprinting consists of biological materials and cells. Because of the dominant gravitational force, the suspended cells in the bioink sediment resulting in the accumulation and aggregation of cells. This study primarily focuses on the quantification of cell sedimentation-induced cell aggregation during and after inkjet-based bioprinting. The major conclusions are summarized as follows: (1) as the printing time increases from 0 min to 60 min, the percentage of the cells forming cell aggregates at the bottom of the bioink reservoir increases significantly from 3.6% to 54.5%, indicating a severe cell aggregation challenge in 3D bioprinting, (2) during inkjet-based bioprinting, at the printing time of only 15 min, more than 80% of the cells within the nozzle have formed cell aggregates. Both the individual cells and cell aggregates tend to migrate to the vicinity of the nozzle centerline mainly due to the weak shear-thinning properties of the bioink, and (3) after the bioprinting process, the mean cell number per microsphere increases significantly from 0.38 to 1.05 as printing time increases from 0 min to 15 min. The maximum number of cells encapsulated within one microsphere is ten, and 29.8% of the microspheres with cells encapsulated have contained small or large cell aggregates at the printing time of 15 min.more » « less