skip to main content


Title: Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches
Abstract

Logic switches enabled by nanoelectromechanical systems (NEMS) offer abrupt on/off‐state transition with zero off‐state leakage and minimal subthreshold swing, making them uniquely suited for enhancing mainstream electronics in a range of applications, such as power gating, high‐temperature and high‐voltage logic, and ultralow‐power circuits requiring zero standby leakage. As NEMS switches are scaled with genuinely nanoscale gaps and contacts, quantum mechanical electrodynamic force (EDF) takes an important role and may be the ultimate cause of the plaguing problem of stiction. Here, combined with experiments on three‐terminal silicon carbide (SiC) NEMS switches, a theoretical investigation is performed to elucidate the origin of EDF and Casimir effect leading to stiction, and to develop a stiction‐mitigation design. The EDF calculation with full Lifshitz formula using the actual material and device parameters is provided. Finite element modeling and analytical calculations demonstrate that EDF becomes dominant over elastic restoring force in such SiC NEMS when the switching gap shrinks to a few nanometers, leading to irreversible stiction at contact. Artificially corrugated contact surfaces are designed to reduce the contact area and the EDF, thus evading stiction. This rationalsurface engineeringreduces the EDF down to 4% compared with the case of unengineered, flat contact surfaces.

 
more » « less
PAR ID:
10454707
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
Volume:
16
Issue:
51
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this article, we present a nanoelectromechanical system (NEMS) designed to detect changes in the Casimir energy. The Casimir effect is a result of the appearance of quantum fluctuations in an electromagnetic vacuum. Previous experiments have used nano- or microscale parallel plate capacitors to detect the Casimir force by measuring the small attractive force these fluctuations exert between the two surfaces. In this new set of experiments, we aim to directly detect the shifts in the Casimir energy in a vacuum due to the presence of the metallic parallel plates, one of which is a superconductor. A change in the Casimir energy of this configuration is predicted to shift the superconducting transition temperature (Tc) because of the interaction between it and the superconducting condensation energy. In our experiment, we take a superconducting film, carefully measure its transition temperature, bring a conducting plate close to the film, create a Casimir cavity, and then measure the transition temperature again. The expected shifts are smaller than the normal shifts one sees in cycling superconducting films to cryogenic temperatures, so using a NEMS resonator in situ is the only practical way to obtain accurate, reproducible data. Using a thin Pb film and opposing Au surface, we observe no shift inTc>12 µK down to a minimum spacing of ~70 nm at zero applied magnetic field.

     
    more » « less
  2. Wide band gap (WBG) devices feature high switching frequency operation and low switching loss. They have been widely adopted in tremendous applications. Nevertheless, the manufacture cost for SiC MOSFET greater than that of the Si IGBT. To achieve a trade off between cost and efficiency, the hybrid switch, which includes the paralleling operation of Si IGBT and SiC MOSFET, is proposed. In this article, an active gate driver is used for the hybrid switch to optimize both the switching and thermal performances. The turn-on and turn-off delays between two individual switches are controlled to minimize the switching loss of traditional Si IGBT. In this way, a higher switching frequency operation can be achieved for the hybrid switch to improve the converter power density. On the other hand, the gate source voltages are adjusted to achieve an optimized thermal performance between two individual switches, which can improve the reliability of the hybrid switch. The proposed active gate driver for hybrid switch is validated with a 2 kW Boost converter. 
    more » « less
  3. null (Ed.)
    A high-voltage-gain dc-dc converter topology is proposed for renewable energy applications. The proposed coupled-inductor-based high-gain dc-dc converter features reduced input current ripple. The semiconductor elements voltage spikes due to the leakage inductance are prevented through the use of a clamping circuit. The Clamping circuit helps recover the leakage inductance stored energy, which causes voltage spikes on the switch. This results in the selection of elements with lower voltage ratings. Power switches with lower voltage ratings lead to lower conduction losses and improved system efficiency. The DC component of the inductor magnetizing current is zero. Consequently, no energy is stored in the inductor core, and the losses are further reduced. 
    more » « less
  4. Abstract

    Micro‐electromechanical (MEM) switches, with advantages such as quasi‐zero leakage current, emerge as attractive candidates for overcoming the physical limits of complementary metal‐oxide semiconductor (CMOS) devices. To practically integrate MEM switches into CMOS circuits, two major challenges must be addressed: sub 1 V operating voltage to match the voltage levels in current circuit systems and being able to deliver at least millions of operating cycles. However, existing sub 1 V mechanical switches are mostly subject to significant body bias and/or limited lifetimes, thus failing to meet both limitations simultaneously. Here 0.2 V MEM switching devices with ≳106safe operating cycles in ambient air are reported, which achieve the lowest operating voltage in mechanical switches without body bias reported to date. The ultralow operating voltage is mainly enabled by the abrupt phase transition of nanolayered vanadium dioxide (VO2) slightly above room temperature. The phase‐transition MEM switches open possibilities for sub 1 V hybrid integrated devices/circuits/systems, as well as ultralow power consumption sensors for Internet of Things applications.

     
    more » « less
  5. Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits. 
    more » « less