skip to main content


Title: Van Der Waals Heterostructures with Spin‐Orbit Coupling
Abstract

Herein, recent work on van der Waals (vdW) systems in which at least one of the components has strong spin‐orbit coupling is reviewed, focussing on a selection of vdW heterostructures to exemplify the type of interesting electronic properties that can arise in these systems. First a general effective model to describe the low energy electronic degrees of freedom in these systems is presented. The model is then applied to study the case of (vdW) systems formed by a graphene sheet and a topological insulator. The electronic transport properties of such systems are discussed and it is shown how they exhibit much stronger spin‐dependent transport effects than isolated topological insulators. Then, vdW systems are considered in which the layer with strong spin‐orbit coupling is a monolayer transition metal dichalcogenide (TMD) and graphene‐TMD systems are briefly discussed. In the second part of the article, a case is discussed in which the vdW system includes a superconducting layer in addition to the layer with strong spin‐orbit coupling. It is shown in detail how these systems can be designed to realize odd‐frequency superconducting pair correlations. Finally, twisted graphene‐NbSe2 bilayer systems are discussed as an example in which the strength of the proximity‐induced superconducting pairing in the normal layer, and its Ising character, can be tuned via the relative twist angle between the two layers forming the heterostructure.

 
more » « less
NSF-PAR ID:
10454751
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Annalen der Physik
Volume:
532
Issue:
2
ISSN:
0003-3804
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Unconventional superconductors have Cooper pairs with lower symmetries than in conventional superconductors. In most unconventional superconductors, the additional symmetry breaking occurs in relation to typical ingredients such as strongly correlated Fermi liquid phases, magnetic fluctuations, or strong spin-orbit coupling in noncentrosymmetric structures. In this article, we show that the time-reversal symmetry breaking in the superconductor LaNiGa 2 is enabled by its previously unknown topological electronic band structure, with Dirac lines and a Dirac loop at the Fermi level. Two symmetry related Dirac points even remain degenerate under spin-orbit coupling. These unique topological features enable an unconventional superconducting gap in which time-reversal symmetry can be broken in the absence of other typical ingredients. Our findings provide a route to identify a new type of unconventional superconductors based on nonsymmorphic symmetries and will enable future discoveries of topological crystalline superconductors. 
    more » « less
  2. Abstract

    Following the discovery of topological insulators, there has been a renewed interest in superconducting systems that have strong spin-orbit (SO) coupling. Here we address the fundamental question of how the spin properties of a otherwise spin-singlet superconducting ground state evolve with increasing SO impurity density. We have mapped out the Zeeman critical field phase diagram of superconducting Al films that were deposited over random Pb cluster arrays of varying density. These phase diagrams give a direct measure of the Fermi liquid spin renormalization, as well as the spin orbit scattering rate. We find that the spin renormalization is a linear function of the average Pb cluster -to- cluster separation and that this dependency can be used to tune the spin susceptibility of the Al over a surprisingly wide range from 0.8χ0to 4.0χ0, whereχ0is the non-interacting Pauli susceptibility.

     
    more » « less
  3. Abstract

    New technologies are emerging which allow us to manipulate and assemble 2-dimensional (2D) building blocks, such as graphene, into synthetic van der Waals (vdW) solids. Assembly of such vdW solids has enabled novel electronic devices and could lead to control over anisotropic thermal properties through tuning of inter-layer coupling and phonon scattering. Here we report the systematic control of heat flow in graphene-based vdW solids assembled in a layer-by-layer (LBL) fashion. In-plane thermal measurements (between 100 K and 400 K) reveal substrate and grain boundary scattering limit thermal transport in vdW solids composed of one to four transferred layers of graphene grown by chemical vapor deposition (CVD). Such films have room temperature in-plane thermal conductivity of ~400 Wm−1 K−1. Cross-plane thermal conductance approaches 15 MWm−2 K−1for graphene-based vdW solids composed of seven layers of graphene films grown by CVD, likely limited by rotational mismatch between layers and trapped particulates remnant from graphene transfer processes. Our results provide fundamental insight into the in-plane and cross-plane heat carrying properties of substrate-supported synthetic vdW solids, with important implications for emerging devices made from artificially stacked 2D materials.

     
    more » « less
  4. Abstract

    The recent discovery of magnetism within the family of exfoliatable van der Waals (vdW) compounds has attracted considerable interest in these materials for both fundamental research and technological applications. However, current vdW magnets are limited by their extreme sensitivity to air, low ordering temperatures, and poor charge transport properties. Here the magnetic and electronic properties of CrSBr are reported, an air‐stable vdW antiferromagnetic semiconductor that readily cleaves perpendicular to the stacking axis. Below its Néel temperature,TN= 132 ± 1 K, CrSBr adopts an A‐type antiferromagnetic structure with each individual layer ferromagnetically ordered internally and the layers coupled antiferromagnetically along the stacking direction. Scanning tunneling spectroscopy and photoluminescence (PL) reveal that the electronic gap is ΔE= 1.5 ± 0.2 eV with a corresponding PL peak centered at 1.25 ± 0.07 eV. Using magnetotransport measurements, strong coupling between magnetic order and transport properties in CrSBr is demonstrated, leading to a large negative magnetoresistance response that is unique among vdW materials. These findings establish CrSBr as a promising material platform for increasing the applicability of vdW magnets to the field of spin‐based electronics.

     
    more » « less
  5. Abstract

    Two‐dimensional transition metal dichalcogenides (TMDs)/graphene van der Waals (vdW) heterostructures integrate the superior light–solid interaction in TMDs and charge mobility in graphene, and therefore are promising for surface‐enhanced Raman spectroscopy (SERS). Herein, a novel TMD (MoS2and WS2) nanodome/graphene vdW heterostructure SERS substrate, on which an extraordinary SERS sensitivity is achieved, is reported. Using fluorescent Rhodamine 6G (R6G) as probe molecules, the SERS sensitivity is in the range of 10−11to 10−12mon the TMD nanodomes/graphene vdW heterostructure substrates using 532 nm Raman excitation, which is comparable to the best sensitivity reported so far using plasmonic metal nanostructures/graphene SERS substrates, and is more than three orders of magnitude higher than that on single‐layer TMD and graphene substrates. Density functional theory simulation reveals enhanced electric dipole moments and dipole–dipole interaction at the TMD/graphene vdW interface, yielding an effective means to facilitate an external electrostatic perturbation on the graphene surface and charge transfer. This not only promotes chemical enhancement on SERS, but also enables electromagnetic enhancement of SERS through the excitation of localized surface plasmonic resonance on the TMD nanodomes. This TMD nanodome/graphene vdW heterostructure is therefore promising for commercial applications in high‐performance optoelectronics and sensing.

     
    more » « less