skip to main content


Title: Advanced Functional Hybrid Proton Exchange Membranes Robust and Conductive at 120 °C
Abstract Proton‐exchange membrane fuel cell vehicles offer a low‐carbon alternative to traditional oil fuel vehicles, but their performances still need improvement to be competitive. Raising their operating temperature to 120 °C will enhance their efficiency but is currently unfeasible due to the poor mechanical properties at high temperatures of the state‐of‐the‐art proton‐exchange membranes consisting of perfluorosulfonic acid (PFSA) ionomers. To address this issue, xx designed composite membranes made of two networks: a mat of hybrid fibers to maintain the mechanical properties filled with a matrix of PFSA‐based ionomer to ensure the proton conductivity. The hybrid fibers obtained by electrospinning are composed of intermixed domains of sulfonated silica and a fluorinated polymer. The inter‐fiber porosity is then filled with a PFSA ionomer to obtain dense composite membranes with a controlled fibers‐to‐ionomer ratio. At 80 °C, these obtained composite membranes show comparable performances to a pure PFSA commercial membrane. At 120 °C however, the tensile strength of the PFSA membrane drastically drop down to 0.2 MPa, while it is maintained at 7.0 MPa for the composite membrane. In addition, the composite membrane shows a good conductivity of up to 0.1 S cm −1 at 120 °C/90% RH, which increases with the ionomer content.  more » « less
Award ID(s):
1659782 2244028
PAR ID:
10454869
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
10
Issue:
3
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Commercial proton exchange membrane heavy-duty fuel cell vehicles will require a five-fold increase in durability compared to current state-of-the art light-duty fuel cell vehicles. We describe a new composite membrane that incorporates silicotungstic heteroply acid (HPA),α-K8SiW11O40▪13H2O, a radical decomposition catalyst and when acid-exchanged can potentially conduct protons. The HPA was covalently bound to a terpolymer of tetrafluoroethylene, vinylidene fluoride, and sulfonyl fluoride containing monomer (1,1,2,2,3,3,4,4-octafluoro-4-((1,2,2-trifluorovinyl)oxy)butane-1-sulfonyl fluoride) by dehydrofluorination followed by addition of diethyl (4-hydroxyphenyl) phosphonate, giving a perfluorosulfonic acid-vinylidene fluoride-heteropoly acid (PFSA-VDF-HPA). A composite membrane was fabricated using a blend of the PFSA-VDF-HPA and the 800EW 3M perfluoro sulfonic acid polymer. The bottom liner-side of the membrane tended to have a higher proportion of HPA moieties compared to the air-side as gravity caused the higher mass density PFSA-VDF-HPA to settle. The composite membrane was shown to have less swelling, more hydrophobic properties, and higher crystallinity than the pure PFSA membrane. The proton conductivity of the membrane was 0.130 ± 0.03 S cm−1at 80 °C and 95% RH. Impressively, when the membrane with HPA-rich side was facing the anode, the membrane survived more than 800 h under accelerated stress test conditions of open-circuit voltage, 90 °C and 30% RH.

     
    more » « less
  2. The fuel cell is the best alternative to compensate for today's energy demand, but the high cost of fabrication of membranes ( e.g. , Nafion) hampers the widespread commercialization. Plant-derived nanocellulose is renewable, most abundant, and biocompatible with high strength and tunable surface chemistry. Here we have demonstrated the jute derived-nitro-oxidized carboxycellulose nanofibers (NOCNFs) as a viable and sustainable substitute for synthetic ionomer membranes used in proton exchange fuel cells (PEFCs). NOCNFs were obtained in two functionalities: carboxylate and carboxylic acid which were then transformed into nanopaper I and II, respectively. This is the first report where NOCNFs with two different functionalities were tested in PEFCs. The results indicated that nanopaper II performed better than nanopaper I with a high proton conductivity of 14.2 mS cm −1 and power density of 19.1 mW cm −2 at high temperature (80 °C) operation in PEFCs, along with excellent durability even for 24 h of operation. 
    more » « less
  3. Abstract

    In this study, pentablock terpolymers with methylpyrrolidinium cations were characterized and investigated as anion exchange membranes and ionomers for solid‐state alkaline fuel cells. The pentablock terpolymer (with methylpyrrolidinium cations) membranes exhibited higher fuel cell power density and durability than commercial FuMA‐Tech (with quaternary ammonium cations) membranes at 30 °C, 100% relative humidity (RH). Optimization of the catalyst ink composition (i.e., solids and solvent ratio) and fuel cell performance of membrane electrode assemblies (MEAs) with pentablock terpolymers as both the membrane and ionomer were also investigated. Optimization of the fuel cell operating conditions corroborates with thein situelectrochemical impedance spectroscopy results. The pentablock terpolymer MEA exhibited a maximum power density of 83.3 mW cm−2and voltage decay rate of 0.7 mV h−1after 100 h of operation under 40 °C, 100% RH. These results show promise for pentablock terptolymers with methylpyrrolidinium cations as a commercially attractive low‐cost alternative anion exchange membrane and ionomer for solid‐state alkaline fuel cells.

     
    more » « less
  4. Polymeric proton exchange membranes (PEMs) are vital components of fuel cells, as they enable the transport of protons while preventing the crossover of fuel and oxidant gases. However, conventional PEMs have limitations such as low use temperature, low proton conductivity, and poor mechanical and thermal stability. Various types of nanoparticles have been investigated to modify PEMs to overcome these limitations, as they can increase proton conductivity, mechanical strength, thermal stability, and chemical resistance. Metal oxides such as SiO2and TiO2have been shown to improve the proton conductivity and mechanical properties of PEMs. Carbon-based materials such as graphene oxide have been found to enhance both the proton conductivity and thermal stability of PEMs. The use of nanoparticles in modified polymeric PEMs for fuel cells shows excellent potential for improving the performance and durability of fuel cells. Future research should focus on developing cost-effective and scalable methods for nanoparticle synthesis and incorporation into PEMs. Polybenzimidazole (PBI) is the most widely studied high-temperature polymer for preparing composite PEMs. This review provides the recent development of PBI composite PEMs modified with different types of nanoparticles.

     
    more » « less
  5. Hydroxide ion conducting block copolymers have the potential to possess the multiple properties required for anion exchange membranes to enable long-lasting alkaline fuel cell performance, and therefore can accelerate the advancement of the alkaline fuel cell, a low-cost alternative to the well-adopted commercial proton exchange membrane fuel cell. In this paper, an overview of hydroxide ion transport (a property that is proportional to fuel cell performance) in block copolymers will be presented and the subsequent impact of block copolymer morphology on ion transport (conductivity), where the careful design of block copolymer chemistry and chain architecture can accelerate hydroxide ion transport. 
    more » « less