skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence of symmetry breaking in a Gd 2 di-nuclear molecular polymer
A chiral 3D coordination compound, [Gd 2 (L) 2 (ox) 2 (H 2 O) 2 ], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j–J coupling evident in the 5p core level spectra of Gd metal. Indications of spin–orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd 2 dimers and a band gap of the compound consistent with optical absorption.  more » « less
Award ID(s):
2003057
PAR ID:
10454920
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
25
Issue:
8
ISSN:
1463-9076
Page Range / eLocation ID:
6416 to 6423
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For the spin crossover coordination polymer [Fe(L1)(bipy)] n (where L1 is a N 2 O 2 2− coordinating Schiff base-like ligand bearing a phenazine fluorophore and bipy = 4,4′-bipyridine), there is compelling additional evidence of a spin state transition. Both Fe 2p X-ray absorption and X-ray core level photoemission spectroscopies confirm that a spin crossover takes place, as observed by magnetometry. Yet the details of the temperature dependent changes of the spin state inferred from both X-ray absorption and X-ray core level photoemission, differ from magnetometry, particularly with regard to the apparent critical transition temperatures and the cooperative nature of the curve progression in general. Comparing the experimental spin crossover data to Ising model simulations, a transition activation energy in the region of 160 to 175 meV is indicated, along with a nonzero exchange J . Overall, the implication is that there may be perturbations to the bistability of spin states, that are measurement dependent or that the surface differs from the bulk with regard to the cooperative effects observed upon spin transition. 
    more » « less
  2. Abstract From a comparison of the known molecular stoichiometry and x-ray photoemission spectroscopy, it is evident that the Fe(III) spin crossover salt [Fe(qsal)2Ni(dmit)2] has a preferential surface termination with the Ni(dmit)2moiety, where qsal = N(8quinolyl)salicylaldimine, and dmit2−= 1,3-dithiol-2-thione-4,5-dithiolato. This preferential surface termination leads to a significant surface to bulk core level shift for the Ni 2p x-ray photoemission core level, not seen in the corresponding Fe 2p core level spectra. A similar surface to bulk core level shift is seen in Pd 3d in the related [Fe(qsal)2]2Pd(dmit)2. Inverse photoemission spectroscopy, compared with the x-ray absorption spectra at the Ni-L3,2 edge provides some indication of the density of states resulting from the dmit2−= 1,3-dithiol-2-thione-4,5-dithiolato ligand unoccupied molecular orbitals and thus supports the evidence regarding surface termination in the Ni(dmit)2moiety. 
    more » « less
  3. Modeling L-edge spectra at X-ray wavelengths requires consideration of spin–orbit splitting of the 2p orbitals. We introduce a low-cost tool to compute core-level spectra that combines a spin–orbit mean-field description of the Breit–Pauli Hamiltonian with nonrelativistic excited states computed using the semi-empirical density-functional theory configuration-interaction singles (DFT/CIS) method, within the state-interaction approach. Our version of DFT/CIS was introduced recently for K-edge spectra and includes a semi-empirical correction to the core orbital energies, significantly reducing ad hoc shifts that are typically required when time-dependent (TD-)DFT is applied to core-level excitations. In combination with the core/valence separation approximation and spin–orbit couplings, the DFT/CIS method affords semiquantitative L-edge spectra at CIS cost. Spin–orbit coupling has a qualitative effect on the spectra, as demonstrated for a variety of 3d transition metal systems and main-group compounds. The use of different active orbital spaces helps to facilitate spectral assignments. We find that spin–orbit splitting has a negligible effect on M-edge spectra for 3d transition metal species. 
    more » « less
  4. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state. 
    more » « less
  5. Abstract GeI 2 is an interesting two-dimensional wide-band gap semiconductor because of diminished edge scattering due to an absence of dangling bonds. Angle-resolved x-ray photoemission spectroscopy indicates a germanium rich surface, and a surface to bulk core-level shift of 1.8 eV in binding energy, between the surface and bulk components of the Ge 2p 3/2 core-level, making clear that the surface is different from the bulk. Temperature dependent studies indicate an effective Debye temperature ( θ D ) of 186 ± 18 K for the germanium x-ray photoemission spectroscopy feature associated with the surface. These measurements also suggest an unusually high effective Debye temperature for iodine (587 ± 31 K), implying that iodine is present in the bulk of the material, and not the surface. From optical absorbance, GeI 2 is seen to have an indirect (direct) optical band gap of 2.60 (2.8) ± 0.02 (0.1) eV, consistent with the expectations. Temperature dependent magnetometry indicates that GeI 2 is moment paramagnetic at low temperatures (close to 4 K) and shows a diminishing saturation moment at high temperatures (close to 300 K and above). 
    more » « less