skip to main content


Title: Design of controllers with distributed central pattern generator architecture for adaptive oscillations
Summary

This article introduces a systematic method for designing a distributed nonlinear controller to achieve multiple distinct gaits, each of which is characterized by a prescribed oscillation profile and velocity, for a class of locomotion systems. We base the controller on the central pattern generator (CPG), a neural circuit which governs repetitive motions, such as walking and swimming, in most animals. First, we establish a general method for designing a nonlinear CPG‐inspired controller to assign a single gait for a linear plant; we show that this problem reduces to an eigenstructure assignment problem for which a solution has recently become available. We then extend the design to an adaptive, structured controller that can adjust the gait in response to variations in the environment. The essential problem becomes a controller design to satisfy different eigenstructure conditions for different plants; a computationally tractable formulation is provided for this problem. We provide two numerical examples using a link‐chain model as a plant representative of animals that move through undulatory motions, such as leeches or eels, to demonstrate the efficacy of this theory. In the first example, we employ an analytical condition for eigenstructure assignment to design an unstructured controller that assigns a single gait for the link‐chain model. The second example searches for a structured controller to assign two different gaits that can be switched using a higher level command.

 
more » « less
NSF-PAR ID:
10455031
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Robust and Nonlinear Control
Volume:
31
Issue:
2
ISSN:
1049-8923
Page Range / eLocation ID:
p. 694-714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The set of equations to be solved for parameter estimation in model updating has no unique solution when, as will often be the case in structural applications, the dimensionality of the model exceeds the number of target parameters estimated from experiments. One approach for enlarging the target space is to create closed-loop systems that, in addition, can be designed with pole sensitivities favorable for updating the model. The present paper will focus on designing gains for model updating using a recently proposed virtual implementation of output feedback, which allows computation of several closed-loop systems, from a single open loop realization and removes the constraint of closed-loop stability. The gains are designed through an eigenstructure assignment procedure, in which the model parameters of interest in the updating are divided into two different classes; one where the pole sensitivities with respect to the parameters are to be enhanced and one where they are to be reduced. A numerical example with a structural system is presented that demonstrates the merit of the proposed gain design procedure. 
    more » « less
  2. null (Ed.)
    In this paper, we present a planning and control framework for dynamic, whole-body motions for dynamically stable shape-accelerating mobile manipulators. This class of robots are inherently unstable and require careful coordination between the upper and lower body to maintain balance while performing manipulation tasks. Solutions to this problem either use a complex, full-body nonlinear dynamic model of the robot or a highly simplified model of the robot. Here we explore the use of centroidal dynamics which has recently become a popular approach for designing balancing controllers for humanoid robots. We describe a framework where we first solve a trajectory optimization problem offline. We define balancing for a ballbot in terms of the centroidal momentum instead of other approaches like ZMP or angular velocity that are more commonly used. The generated motion is tracked using a PD- PID cascading balancing controller for the body and torque controller for the arms. We demonstrate that this framework is capable of generating dynamic motion plans and control inputs with examples on the CMU ballbot, a single-spherical-wheeled balancing mobile manipulator. 
    more » « less
  3. null (Ed.)
    Can we design motion primitives for complex legged systems uniformly for different terrain types without neglecting modeling details? This paper presents a method for rapidly generating quadrupedal locomotion on sloped terrains-from modeling to gait generation, to hardware demonstration. At the core of this approach is the observation that a quadrupedal robot can be exactly decomposed into coupled bipedal robots. Formally, this is represented through the framework of coupled control systems, wherein isolated subsystems interact through coupling constraints. We demonstrate this concept in the context of quadrupeds and use it to reduce the gait planning problem for uneven terrains to bipedal walking generation via hybrid zero dynamics. This reduction method allows for the formulation of a nonlinear optimization problem that leverages low-dimensional bipedal representations to generate dynamic walking gaits on slopes for the full-order quadrupedal robot dynamics. The result is the ability to rapidly generate quadrupedal walking gaits on a variety of slopes. We demonstrate these walking behaviors on the Vision 60 quadrupedal robot; in simulation, via walking on a range of sloped terrains of 13°, 15°, 20°, 25°, and, experimentally, through the successful locomotion of 13° and 20° ~ 25° sloped outdoor grasslands. 
    more » « less
  4. Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely underexplored. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP. The middle layer translates the desired global behaviors into the robot’s full-body reference trajectories for all directly actuated degrees of freedom, while the lowest layer exponentially tracks those reference trajectories based on the full-order, hybrid, nonlinear robot model. Simulations confirm that the proposed framework ensures stable walking of a planar underactuated biped under different swaying DRS motions and gait types. 
    more » « less
  5. Hybrid systems, such as bipedal walkers, are challenging to control because of discontinuities in their nonlinear dynamics. Little can be predicted about the systems’ evolution without modeling the guard conditions that govern transitions between hybrid modes, so even systems with reliable state sensing can be difficult to control. We propose an algorithm that allows for determining the hybrid mode of a system in real-time using data-driven analysis. The algorithm is used with data-driven dynamics identification to enable model predictive control based entirely on data. Two examples—a simulated hopper and experimental data from a bipedal walker—are used. In the context of the first example, we are able to closely approximate the dynamics of a hybrid SLIP model and then successfully use them for control in simulation. In the second example, we demonstrate gait partitioning of human walking data, accurately differentiating between stance and swing, as well as selected subphases of swing. We identify contact events, such as heel strike and toe-off, without a contact sensor using only kinematics data from the knee and hip joints, which could be particularly useful in providing online assistance during walking. Our algorithm does not assume a predefined gait structure or gait phase transitions, lending itself to segmentation of both healthy and pathological gaits. With this flexibility, impairment-specific rehabilitation strategies or assistance could be designed. 
    more » « less