This study demonstrates an electrochemical method for the deposition of Ag nanoparticles with anisotropic quasi‐flat structures on solid substrates to form thin films with tunable plasmonic bands covering the full visible range (from 450 to 780 nm). By manipulating the electrodeposition conditions (such as the concentration of capping ligands and pulse voltage), the size and aspect ratio of the deposited silver nanostructures can be controlled and subsequently their plasmonic bands can be tuned. Unlike the free colloidal nanoparticles that often aggregate when exposed to poor solvents, the electrodeposited Ag nanostructured films adhere strongly to the substrates, allowing for their convenient use as effective sensors for the rapid detection of various solvents and their mixtures based on refractive indices. This work provides a new and robust pathway for the preparation of supported plasmonic nanostructured films with controllable morphology and desirable optical property and stability.
Nanostructured silver stands out among other plasmonic materials because its optical losses are the lowest of all metals. However, nanostructured silver rapidly degrades under ambient conditions, preventing its direct use in most plasmonic applications. Here, a facile and robust method for the preparation of highly stable nanostructured silver morphologies is introduced. 3D nanostructured gyroid networks are fabricated through electrodeposition into voided, self‐assembled triblock terpolymer scaffolds. Exposure to an argon plasma degraded the polymer and stabilized the silver nanostructure for many weeks, even in high humidity and under high‐dose UV irradiation. This stabilization protocol enables the robust manufacture of low‐loss silver nanostructures for a wide range of plasmonic applications.
more » « less- Award ID(s):
- 1707836
- PAR ID:
- 10455078
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 7
- Issue:
- 23
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Designing plasmonic nanoparticles for biomedical photoacoustic (PA) imaging involves tailoring material properties at the nanometer scale. A key in developing plasmonic PA contrast nanoagents is to engineer their enhanced optical responses in the near‐infrared wavelength range, as well as heat transfer properties and photostability. This study introduces anisotropic plasmonic nanosphere aggregates with close interparticle proximity as photostable and efficient contrast agents for PA imaging. Silver (Ag) is particularly attractive because it has the strongest optical response and highest heat conductivity among plasmonic metals. The results demonstrate that close interparticle proximity in silver nanoaggregates (AgNAs), spatially confined within a polymer shell layer, leads to blackbody‐like optical absorption, resulting in robust PA signals through efficient pulsed heat generation and transfer. Additionally, the AgNAs exhibit a high photodamage threshold highlighting their potential to outperform conventional plasmonic contrast agents for high‐contrast PA imaging over multiple imaging sessions. Furthermore, the capability of the AgNAs are demonstrated for molecular PA cancer imaging in vivo by incorporating a tumor‐targeting peptide moiety.
-
Abstract The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH−ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.
-
Abstract The fast and reversible switching of plasmonic color holds great promise for many applications, while its realization has been mainly limited to solution phases, achieving solid‐state plasmonic color‐switching has remained a significant challenge owing to the lack of strategies in dynamically controlling the nanoparticle separation and their plasmonic coupling. Herein, we report a novel strategy to fabricate plasmonic color‐switchable silver nanoparticle (AgNP) films. Using poly(acrylic acid) (PAA) as the capping ligand and sodium borate as the salt, the borate hydrolyzes rapidly in response to moisture and produces OH−ions, which subsequently deprotonate the PAA on AgNPs, change the surface charge, and enable reversible tuning of the plasmonic coupling among adjacent AgNPs to exhibit plasmonic color‐switching. Such plasmonic films can be printed as high‐resolution invisible patterns, which can be readily revealed with high contrast by exposure to trace amounts of water vapor.
-
Abstract Diatoms are single‐celled algae that biologically fabricate nanostructured silica shells with ordered pore arrays called frustules that resemble a 2D photonic crystal. A monolayer of
Pinnularia frustules isolated from cell culture is deposited on a glass substrate and then conformally coated with silver nanoparticles (AgNPs) to serve as a nanostructured thin film for ultrathin layer chromatography (UTLC). Malachite green and Nile red are resolved in toluene mobile phase and the separated analytes are profiled micro‐Raman spectroscopy, where plasmonic AgNPs provide surface‐enhanced Raman scattering (SERS). The AgNP‐diatom frustule monolayer improves SERS detection of malachite green by an average factor of 1.8 ± 0.1 over the plasmonic AgNP layer on glass. Analysis of hot spots on the AgNP‐diatom frustule monolayer reveals that nearly 20% of the SERS active area intensifies the SERS signal at least tenfold over the SERS signal for AgNP on glass. Diatom‐SERS enhancement is attributed to guided‐mode resonances of the Raman laser source, which in turn further enhances the localized surface plasmonic resonance from AgNPs. Overall, the AgNP‐diatom frustule monolayer thin film is a new functional material that uniquely enables separation of analytes by UTLC, quantitative SERS detection of separated analytes, and photonic enhancement of the SERS signals.