Abstract Changes in rainfall variability of El Niño–Southern Oscillation (ENSO) are investigated under scenarios where the greenhouse gases increase and then stabilize. During the period of increasing greenhouse forcing, the ocean mixed layer warms rapidly. After the forcing stabilizes, the deeper ocean continues to warm the surface (the slow response). We show that ENSO rainfall variability over the tropical Pacific intensifies in both periods but the rate of increase per degree global mean surface temperature (GMST) warming is larger for the slow response because of greater relative warming in the base state as the mean upwelling changes from a damping to a driver of the surface warming. Our results have important implications for climate extremes under GMST stabilization that the Paris Agreement calls for. To stabilize GMST, the fast surface cooling offsets the slow warming from the prior greenhouse gas increase, while ENSO rainfall variability would continue to increase.
more »
« less
Enhanced El Niño–Southern Oscillation Variability in Recent Decades
Abstract The El Niño–Southern Oscillation (ENSO) represents the largest source of year‐to‐year global climate variability. While Earth system models suggest a range of possible shifts in ENSO properties under continued greenhouse gas forcing, many centuries of preindustrial climate data are required to detect a potential shift in the properties of recent ENSO extremes. Here we reconstruct the strength of ENSO variations over the last 7,000 years with a new ensemble of fossil coral oxygen isotope records from the Line Islands, located in the central equatorial Pacific. The corals document a significant decrease in ENSO variance of ~20% from 3,000 to 5,000 years ago, coinciding with changes in spring/fall precessional insolation. We find that ENSO variability over the last five decades is ~25% stronger than during the preindustrial. Our results provide empirical support for recent climate model projections showing an intensification of ENSO extremes under greenhouse forcing.
more »
« less
- Award ID(s):
- 1634996
- PAR ID:
- 10455120
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 7
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The dynamics shaping the El Niño‐Southern Oscillation's (ENSO) response to present and future climate change remain unclear, partly due to limited paleo‐ENSO records spanning past abrupt climate events. Here, we measure Mg/Ca ratios on individual foraminifera to reconstruct east Pacific subsurface temperature variability, a proxy for ENSO variability, across the last 25,000 years, including the millennial‐scale events of the last deglaciation. Combining these data with proxy system model output reveals divergent ENSO responses to Northern Hemisphere stadials: enhanced variability during Heinrich Stadial 1 (H1) and reduced variability during the Younger Dryas (YD), relative to the Holocene. H1 ENSO likely intensified through meltwater‐induced changes to ocean/atmospheric circulation, a response observed in models, but the lack of a similar response during the YD challenges model simulations. We suggest the tropical Pacific mean state during H1 primed ENSO for larger fluctuations under meltwater forcing, whereas the YD mean state likely buffered against it.more » « less
-
Abstract Rainfall over mainland Southeast Asia experiences variability on seasonal to decadal timescales in response to a multitude of climate phenomena. Historical records and paleoclimate archives that span the last millennium reveal extreme multi-year rainfall variations that significantly affected the societies of mainland Southeast Asia. Here we utilize the Community Earth System Model Last Millennium Ensemble (CESM-LME) to quantify the contributions of internal and external drivers to decadal-scale rainfall extremes in the Southeast Asia region. We find that internal variability was dominant in driving both Southeast Asian drought and pluvial extremes on decadal timescales although external forcing impacts are also detectable. Specifically, rainfall extremes are more sensitive to Pacific Ocean internal variability than the state of the Indian Ocean. This discrepancy is greater for droughts than pluvials which we suggest is attributable to external forcing impacts that counteract the forced Indian Ocean teleconnections to Southeast Asia. Volcanic aerosols, the most effective radiative forcing during the last millennium, contributed to both the Ming Dynasty Drought (1637–1643) and the Strange Parallels Drought (1756–1768). From the Medieval Climate Anomaly to the Little Ice Age, we observe a shift in Indo-Pacific teleconnection strength to Southeast Asia consistent with enhanced volcanism during the latter interval. This work not only highlights asymmetries in the drivers of rainfall extremes but also presents a framework for quantifying multivariate drivers of decadal-scale variability and hydroclimatic extremes.more » « less
-
Abstract The Gulf of Maine, located in the western North Atlantic, has undergone recent, rapid ocean warming but the lack of long-term, instrumental records hampers the ability to put these significant hydrographic changes into context. Here we present multiple 300-year long geochemical records (oxygen, nitrogen, and previously published radiocarbon isotopes) measured in absolutely-datedArctica islandicashells from the western Gulf of Maine. These records, in combination with climate model simulations, suggest that the Gulf of Maine underwent a long-term cooling over most of the last 1000 years, driven primarily by volcanic forcing and North Atlantic ocean dynamics. This cooling trend was reversed by warming beginning in the late 1800s, likely due to increased atmospheric greenhouse gas concentrations and changes in western North Atlantic circulation. The climate model simulations suggest that the warming over the last century was more rapid than almost any other 100-year period in the last 1000 years in the region.more » « less
-
Abstract The El Niño Southern Oscillation (ENSO) is highly dependent on coupled atmosphere-ocean interactions and feedbacks, suggesting a tight relationship between ENSO strength and background climate conditions. However, the extent to which background climate state determines ENSO behavior remains in question. Here we present reconstructions of total variability and El Niño amplitude from individual foraminifera distributions at discrete time intervals over the past ~285,000 years across varying atmospheric CO2levels, global ice volume and sea level, and orbital insolation forcing. Our results show a strong correlation between eastern tropical Pacific Ocean mixed-layer thickness and both El Niño amplitude and central Pacific variability. This ENSO-thermocline relationship implicates upwelling feedbacks as the major factor controlling ENSO strength on millennial time scales. The primacy of the upwelling feedback in shaping ENSO behavior across many different background states suggests accurate quantification and modeling of this feedback is essential for predicting ENSO’s behavior under future climate conditions.more » « less
An official website of the United States government
