skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High throughput solubility and redissolution screening for antibody purification via combined PEG and zinc chloride precipitation
Abstract As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever‐increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation‐prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties.  more » « less
Award ID(s):
1705642
PAR ID:
10455209
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology Progress
Volume:
36
Issue:
6
ISSN:
8756-7938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As upstream product titers increase, the downstream chromatographic capture step has become a significant “downstream bottleneck.” Precipitation becomes more attractive under these conditions as the supersaturation driving force increases with the ever-increasing titer. In this study, two precipitating reagents with orthogonal mechanisms, polyethylene glycol (PEG) as a volume excluder and zinc chloride (ZnCl2) as a cross linker, were examined as precipitants for two monoclonal antibodies (mAbs), one stable and the other aggregation-prone, in purified drug substance and harvested cell culture fluid forms. Manual batch solubility and redissolution experiments were performed as scouting experiments. A high throughput (HTP) liquid handling system was used to investigate the design space as fully as possible while reducing time, labor, and material requirements. Precipitation and redissolution were studied by systematically varying the concentrations of PEG and ZnCl2 to identify combinations that resulted in high yield and good quality for the stable mAb; PEG concentrations in the range 7–7.5 wt/vol% together with 10 mM ZnCl2 gave a yield of 97% and monomer contents of about 93%. While yield for the unstable mAb was high, quality was not acceptable. Performance at selected conditions was further corroborated for the stable mAb using a continuous tubular precipitation reactor at the laboratory scale. The HTP automation system was a powerful tool for locating desired (customized) conditions for antibodies of different physicochemical properties. 
    more » « less
  2. Abstract Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed‐and‐bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start‐up and steady‐state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed‐and‐bleed configuration for the initial capture / purification of a mAb product. 
    more » « less
  3. Abstract The catalytic hydrothermal liquefaction of biomass under a hydrogen atmosphere is a promising technology to produce stable biocrude oil as a sustainable alternative to petroleum crude. A series of iron‐based non‐noble mix metal‐oxide‐on‐silica catalysts were evaluated to mimic the natural transformation that may have led to the conversion of terrestrial biomass to fossilized fuels. Switchgrass powder was liquefied to a stable bio‐oil with a 71.2% yield by using FeOx/SiO2catalyst in ethanol under a 5.5 MPa hydrogen atmosphere at 210 °C. The use of Fe‐MOx/SiO2(M = V, Mn, Co, Ni, Cu and Mo) type bimetallic oxide catalysts instead of FeOx/SiO2can produce improvements in liquefaction yields by using Mn, Co, Ni, and Cu as the second metal. The highest liquefaction yield of 78.8% was observed with the Fe‐CuOx/SiO2catalyst. Liquefaction oils were formed that were composed of complex mixtures of C6‐C12 alcohols, esters, aldehydes, and phenols. The lignin products:holocellulose products ratio changed in the range 0.35 to 0.15 and the composition of oils changed significantly with the use of mixed metal oxides in place of single metal FeOx/SiO2The most effective catalyst, Fe‐CuOx/SiO2could be reused in five cycles with a small loss in liquefaction yield from 78.8% to 70.0% after four reuse cycles and after regeneration of the catalyst at 500 °C for 3 h in air. 
    more » « less
  4. null (Ed.)
    Precipitation can be used for the initial purification of monoclonal antibodies (mAbs), with the soluble host cell proteins removed in the permeate by tangential flow microfiltration. The objective of this study was to examine the use of a feed-and-bleed configuration to increase the effective conversion (ratio of permeate to feed flow rates) in the hollow fiber module to enable more effective washing of the precipitate. Experiments were performed using human serum Immunoglobulin G (IgG) precipitates formed with 10 mM zinc chloride and 7 wt% polyethylene glycol. The critical flux was evaluated as a function of the shear rate and IgG concentration, with the resulting correlation used to predict conditions that can achieve 90% conversion in a single pass with minimal fouling. Experimental data for both the start-up and steady-state performance are in good agreement with model calculations. These results were used to analyze the performance of an enhanced continuous precipitation–microfiltration process using the feed-and-bleed configuration for the initial capture / purification of a mAb product. 
    more » « less
  5. Abstract Switchgrass (Panicum virgatumL.) is a prominent bioenergy crop with robust resilience to environmental stresses. However, our knowledge regarding how precipitation changes affect switchgrass photosynthesis and its responses to light and CO2remains limited. To address this knowledge gap, we conducted a field precipitation experiment with five different treatments, including −50%, −33%, 0%, +33%, and +50% of ambient precipitation. To determine the responses of leaf photosynthesis to CO2concentration and light, we measured leaf net photosynthesis of switchgrass under different CO2concentrations and light levels in 2020 and 2021 for each of the five precipitation treatments. We first evaluated four light and CO2response models (i.e., rectangular hyperbola model, nonrectangular hyperbola model, exponential model, and the modified rectangular hyperbola model) using the measurements in the ambient precipitation treatment. Based on the fitting criteria, we selected the nonrectangular hyperbola model as the optimal model and applied it to all precipitation treatments, and estimated model parameters. Overall, the model fit field measurements well for the light and CO2response curves. Precipitation change did not influence the maximum net photosynthetic rate (Pmax) but influenced other model parameters including quantum yield (α), convexity (θ), dark respiration (Rd), light compensation point (LCP), and saturated light point (LSP). Specifically, the meanPmaxof five precipitation treatments was 17.6 μmol CO2m−2 s−1, and the ambient treatment tended to have a higherPmax. The +33% treatment had the highestα, and the ambient treatment had lowerθandLCP, higherRd, and relatively lowerLSP. Furthermore, precipitation significantly influenced all model parameters of CO2response. The ambient treatment had the highestPmax, largestα, and lowestθ,Rd, and CO2compensation pointLCP. Overall, this study improved our understanding of how switchgrass leaf photosynthesis responds to diverse environmental factors, providing valuable insights for accurately modeling switchgrass ecophysiology and productivity. 
    more » « less