skip to main content


Title: Investigations of Aerobic Methane Oxidation in Two Marine Seep Environments: Part 2—Isotopic Kinetics
Abstract

During aerobic oxidation of methane (CH4) in seawater, a process which mitigates atmospheric emissions, the12C‐isotopologue reacts with a slightly greater rate constant than the13C‐isotopologue, leaving the residual CH4isotopically fractionated. Prior studies have attempted to exploit this systematic isotopic fractionation from methane oxidation to quantify the extent that a CH4pool has been oxidized in seawater. However, cultivation‐based studies have suggested that isotopic fractionation fundamentally changes as a microbial population blooms in response to an influx of reactive substrates. Using a systematic mesocosm incubation study with recently collected seawater, here we investigate the fundamental isotopic kinetics of aerobic CH4oxidation during a microbial bloom. As detailed in a companion paper, seawater samples were collected from seep fields in Hudson Canyon, U.S. Atlantic Margin, and atop Woolsey Mound (also known as Sleeping Dragon) which is part of lease block MC118 in the northern Gulf of Mexico, and used in these investigations. The results from both Hudson Canyon and MC118 show that in these natural environments isotopic fraction for CH4oxidation follows a first‐order kinetic process. The results also show that the isotopic fractionation factor remains constant during this methanotrophic bloom once rapid CH4oxidation begins and that the magnitude of the fractionation factor appears correlated with the first‐order reaction rate constant. These findings greatly simplify the use of natural stable isotope changes in CH4to assess the extent that CH4is oxidized in seawater following seafloor release.

 
more » « less
Award ID(s):
1756947
NSF-PAR ID:
10455351
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
11
ISSN:
2169-9275
Page Range / eLocation ID:
p. 8392-8399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Microbial aerobic oxidation is known to be a significant sink of marine methane (CH4), contributing to the relatively minor atmospheric release of this greenhouse gas over vast stretches of the ocean. However, the chemical kinetics of aerobic CH4oxidation are not well established, making it difficult to predict and assess the extent that CH4is oxidized in seawater following seafloor release. Here we investigate the kinetics of aerobic CH4oxidation using mesocosm incubations of fresh seawater samples collected from seep fields in Hudson Canyon, U.S. Atlantic Margin and MC118, Gulf of Mexico to gain a fundamental chemical understanding of this CH4sink. The goals of this investigation were to determine the response or lag time following CH4release until more rapid oxidation begins, the reaction order, and the stoichiometry of reactants utilized (i.e., CH4, oxygen, nitrate, phosphate, trace metals) during CH4oxidation. The results for both Hudson Canyon and MC118 environments show that CH4oxidation rates sharply increased within less than one month following the CH4inoculation of seawater. However, the exact temporal characteristics of this more rapid CH4oxidation varied based on location, possibly dependent on the local circulation and biogeochemical conditions at the point of seawater collection. The data further suggest that methane oxidation behaves as a first‐order kinetic process and that the reaction rate constant remains constant once rapid CH4oxidation begins.

     
    more » « less
  2. Abstract

    Karst subterranean estuaries (KSEs) extend into carbonate platforms along 12% of all coastlines. A recent study has shown that microbial methane (CH4) consumption is an important component of the carbon cycle and food web dynamics within flooded caves that permeate KSEs. In this study, we obtained high‐resolution (~2.5‐day) temporal records of dissolved methane concentrations and its stable isotopic content (δ13C) to evaluate how regional meteorology and hydrology control methane dynamics in KSEs. Our records show that less methane was present in the anoxic fresh water during the wet season (4,361 ± 89 nM) than during the dry season (5,949 ± 132 nM), suggesting that the wet season hydrologic regime enhances mixing of methane and other constituents into the underlying brackish water. The δ13C of the methane (−38.1 ± 1.7‰) in the brackish water was consistently more13C‐enriched than fresh water methane (−65.4 ± 0.4‰), implying persistent methane oxidation in the cave. Using a hydrologically based mass balance model, we calculate that methane consumption in the KSE was 21–28 mg CH4·m2·year1during the 6‐month dry period, which equates to ~1.4 t of methane consumed within the 102‐ to 138‐km2catchment basin for the cave. Unless wet season methane consumption is much greater, the magnitude of methane oxidized within KSEs is not likely to affect the global methane budget. However, our estimates constrain the contribution of a critical resource for this widely distributed subterranean ecosystem.

     
    more » « less
  3. Abstract

    This study evaluates rates and pathways of methane (CH4) oxidation and uptake using14C‐based tracer experiments throughout the oxic and anoxic waters of ferruginous Lake Matano. Methane oxidation rates in Lake Matano are moderate (0.36 nmol L−1 day−1to 117 μmol L−1 day−1) compared to other lakes, but are sufficiently high to preclude strong CH4fluxes to the atmosphere. In addition to aerobic CH4oxidation, which takes place in Lake Matano's oxic mixolimnion, we also detected CH4oxidation in Lake Matano's anoxic ferruginous waters. Here, CH4oxidation proceeds in the apparent absence of oxygen (O2) and instead appears to be coupled to some as yet uncertain combination of nitrate (), nitrite (), iron (Fe) or manganese (Mn), or sulfate () reduction. Throughout the lake, the fraction of CH4carbon that is assimilated vs. oxidized to carbon dioxide (CO2) is high (up to 93%), indicating extensive CH4conversion to biomass and underscoring the importance of CH4as a carbon and energy source in Lake Matano and potentially other ferruginous or low productivity environments.

     
    more » « less
  4. Abstract

    The potent greenhouse gas nitrous oxide (N2O) may have been an important constituent of Earth's atmosphere during Proterozoic (~2.5–0.5 Ga). Here, we tested the hypothesis that chemodenitrification, the rapid reduction of nitric oxide by ferrous iron, would have enhanced the flux of N2O from ferruginous Proterozoic seas. We empirically derived a rate law,, and measured an isotopic site preference of +16‰ for the reaction. Using this empirical rate law, and integrating across an oceanwide oxycline, we found that lownM NOand μM‐lowmMFe2+concentrations could have sustained a sea‐air flux of 100–200 Tg N2O–N year−1, if N2fixation rates were near‐modern and all fixed N2was emitted as N2O. A 1D photochemical model was used to obtain steady‐state atmospheric N2O concentrations as a function of sea‐air N2O flux across the wide range of possiblepO2values (0.001–1PAL). At 100–200 Tg N2O–N year−1and >0.1PALO2, this model yielded low‐ppmv N2O, which would produce several degrees of greenhouse warming at 1.6 ppmvCH4and 320 ppmvCO2. These results suggest that enhanced N2O production in ferruginous seawater via a previously unconsidered chemodenitrification pathway may have helped to fill a Proterozoic “greenhouse gap,” reconciling an ice‐free Mesoproterozoic Earth with a less luminous early Sun. A particularly notable result was that high N2O fluxes at intermediate O2concentrations (0.01–0.1PAL) would have enhanced ozone screening of solarUVradiation. Due to rapid photolysis in the absence of an ozone shield, N2O is unlikely to have been an important greenhouse gas if Mesoproterozoic O2was 0.001PAL. At low O2, N2O might have played a more important role as life's primary terminal electron acceptor during the transition from an anoxic to oxic surface Earth, and correspondingly, from anaerobic to aerobic metabolisms.

     
    more » « less
  5. Abstract

    Seasonally ice‐covered permafrost lakes in the Arctic emit methane to the atmosphere during periods of open‐water. However, processes contributing to methane cycling under‐ice have not been thoroughly addressed despite the potential for significant methane emission to the atmosphere at ice‐out. We studied annual dissolved methane dynamics within a small (0.2 ha) Mackenzie River Delta lake using sensor and water sampling packages that autonomously and continuously collected lake water samples, respectively, for two years at multiple water column depths. Lake physical and biogeochemical properties (temperature; light; concentrations of dissolved oxygen, manganese, iron, and dissolved methane, including stable carbon, and radiocarbon isotopes) revealed annual patterns. Dissolved methane concentrations increase under‐ice after electron acceptors (oxygen, manganese, and iron oxides) are depleted or inaccessible from the water column. The radiocarbon age of dissolved methane suggests a source from recently decomposed carbon as opposed to thawed ancient permafrost. Sources of dissolved methane under‐ice include a diffusive flux from the sediments and may include water column methanogenesis and/or under‐ice hydrodynamic controls. Following ice‐out, the water column only partially mixes allowing half of the winter‐derived dissolved methane to be microbially oxidized. Despite oxidation at depth, surface water was a source of methane to the atmosphere. The greatest diffusive fluxes to the atmosphere occurred following ice‐out (75 mmol CH4m−2 d−1) and during a mixing episode in mid‐July, likely driven by a storm event. This study demonstrates the importance of fine‐scale temporal sampling to understand dissolved methane processes in seasonally ice‐covered lakes.

     
    more » « less