skip to main content


Title: Regeneration of macronutrients and trace metals during phytoplankton decay: An experimental study
Abstract

Macronutrients and trace metals are incorporated into phytoplankton during growth and regenerated back into the water column when phytoplankton decay, a process that contributes to the distributions of dissolved trace metals and macronutrients in depth profiles. To study this, we incubated mixed Gulf of Mexico phytoplankton assemblages and monocultures of the diatomPseudo‐nitzschia dolorosaand the dinoflagellateKarenia brevisin the dark. Over 6 months, macronutrients (phosphate, silicic acid, nitrate + nitrite, nitrite, ammonium), chlorophyll‐a, particulate organic carbon and nitrogen, and prokaryotes were monitored alongside dissolved manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb). Results were compared to depth profiles to evaluate the role of regeneration in trace metal cycling. In contrast to water‐column distributions, silicic acid and phosphate were closely coupled in experiments containing diatoms, indicating a shared regeneration pathway. Nitrification and nitrifying prokaryotes were only observed near the end of a subset of the experiments. Of the trace metals, Cd was most tightly coupled with phosphate. Regeneration of Mn was followed by rapid drawdown, consistent with Mn‐oxide formation. Iron (Fe), Cu, and Pb typically remained low until Mn was depleted, suggesting either scavenging to Mn‐oxides or otherwise delayed regeneration of these elements. Cobalt (Co) and Ni were largely conservative, but behaved like nutrients in the experiment using more offshore water low in Cd and Zn. Although experimental conditions were limited in their representation of the water column, these incubations provide novel insight into macronutrient and trace metal regeneration in the oceans.

 
more » « less
NSF-PAR ID:
10455440
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
65
Issue:
8
ISSN:
0024-3590
Page Range / eLocation ID:
p. 1936-1960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12to inshore and offshore waters were employed and allowed assessment of metal (M) uptake relative to soluble reactive phosphorus (P) across a wide range of initial conditions. Offshore, treatments of >1 nmol L−1added Fe were Fe‐replete, whereas inshore waters were already Fe‐replete. Results suggest Mn was a secondary limiting nutrient inshore and offshore. No Fe‐vitamin B12colimitation was observed. Overall, M:P uptake in the incubations was closely related to initial dissolved M:P for Fe, Mn, Co, Ni, and Cd, and for Cu inshore. Final concentrations of Fe and Zn were similar across light treatments of the experiments despite very different phytoplankton responses, and we observed evidence for Co/Cd/Zn substitution and for recycling of biogenic metals as inventories plateaued. In dark bottles, the absence of Mn oxidation may have allowed more efficient recycling of Fe and other trace metals. Our results provide insight into factors governing trace metal uptake, with implications for phytoplankton community composition locally and preformed micronutrient bioavailability in Southern Ocean water masses.

     
    more » « less
  2. Abstract

    Oxygen‐deficient zones (ODZs) play an important role in the distribution and cycling of trace metals in the ocean, as important sources of metals including Fe and Mn, and also as possible sinks of chalcophile elements such as Cd. The Eastern Tropical North Pacific (ETNP) ODZ is one of the three largest ODZs worldwide. Here, we present results from two sectional surveys through the ETNP ODZ conducted in 2018, providing high‐resolution concentrations of several metals, along with complimentary measurements of nutrients and iodine speciation. We show that samples obtained from the ship's regular rosette are clean for Cd, Mn, Ni, and light rare earth elements, while uncontaminated Fe, Zn, Cu, and Pb samples cannot be obtained without a special trace‐metal clean sampling system. Our results did not show evidence of Cd sulfide precipitation, even within the most oxygen‐depleted water mass. High Mn and Ce concentrations and high Ce anomalies were observed in low‐oxygen seawater. These maxima were most pronounced in the upper water column below the oxycline, coincident with the secondary nitrite maxima and the lowest oxygen concentrations, in what is generally considered the most microbially active part of the water column. High Mn and Ce features were also coincident with maxima in excess iodine, a tracer of shelf sediment sources. Mn and Ce maxima were most prominent within the 13°C water mass, spanning a density horizon that enhances isopycnal transport from the shelf sediments, resulting in transport of Mn and Ce at least 2500 km offshore.

     
    more » « less
  3. Abstract

    The surface waters of the Arctic Ocean include an important inventory of freshwater from rivers, sea ice melt, and glacial meltwaters. While some freshwaters are mixed directly into the surface ocean, cryospheric reservoirs, such as snow, sea ice, and melt ponds act as incubators for trace metals, as well as potential sources to the surface ocean upon melting. The availability and reactivity of these metals depends on their speciation, which may vary across each pool or undergo transformation upon mixing. We present here baseline measurements of colloidal (∼0.003–0.200 μm) iron (Fe), zinc (Zn), nickel (Ni), copper (Cu), cadmium (Cd), and manganese (Mn) in snow, sea ice, melt ponds, and the underlying seawater. We consider both the total concentration of colloidal metals ([cMe]) in each cryospheric reservoir and the contribution of cMe to the overall dissolved metal phase (%cMe). Notably, snow contained higher (cMe) as well as higher %cMe relative to seawater for metals such as Fe and Zn across most stations. Stations close to the North Pole had relatively high aerosol deposition, imparting high (cFe) and (cZn), as well as high %cFe, %cZn, %cMn, and %cCd (>80%). In contrast, surface seawater concentrations of Cd, Cu, Mn, and Ni were dominated by the soluble phase (<0.003 μm), suggesting little impact of cMe from the melting cryosphere, or rapid aggregation/disaggregation dynamics within surface waters leading to the loss of cMe. This has important implications for how trace metal biogeochemistry speciation and thus fluxes may change in a future ice‐free Arctic Ocean.

     
    more » « less
  4. Abstract

    Ocean time‐series sites are influenced by both temporal variability, as in situ conditions change, as well as spatial variability, as water masses move across the fixed observation point. To remove the effect of spatial variability, this study made sub‐daily Lagrangian observations of trace elements and isotopes (Al, Sc, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb,232Th, and230Th) in surface water over a 12‐day period (July–August 2015) in the North Pacific near the Hawaii Ocean Time‐series Station ALOHA. Additionally, a vertical profile in the upper 250 m was analyzed. This dataset is intercalibrated with GEOTRACES standards and provides a consistent baseline for trace element studies in the oligotrophic North Pacific. No diel changes in trace elements could be resolved, although day‐to‐day variations were resolved for some elements (Fe, Cu, and Zn), which may be related to organic matter cycling or ligand availability. Pb concentrations remained relatively constant during 1997–2015, presenting a change from previous decreases. Nutrient to trace element stoichiometric ratios were compared to those observed in phytoplankton as an indication of the extent of biological trace element utilization in this ecosystem, providing a basis for future ecological trace element studies.

     
    more » « less
  5. Abstract

    This study traces dissolved organic matter (DOM) in different water masses of the Arctic Ocean and its effect on the distributions of trace elements (TEs; Fe, Cu, Mn, Ni, Zn, Cd) using fluorescent properties of DOM and the terrigenous biomarker lignin. The Nansen, Amundsen, and Makarov Basins were characterized by the influence of Atlantic water and the fluvial discharge of the Siberian Rivers with high concentrations of terrigenous DOM (tDOM). The Canada Basin and the Chukchi Sea were characterized by Pacific water, modified through contact with productive shelf sediments with elevated levels of marine DOM. Within the surface layer of the Beaufort Gyre, meteoric water (river water and precipitation) was characterized by low concentrations of lignin and tDOM fluorescence proxies as DOM is removed during freezing. High‐resolution in situ fluorescence profiles revealed that DOM distribution closely followed isopycnals, indicating the strong influence of sea‐ice formation and melt, which was also reflected in strong correlations between DOM fluorescence and brine contributions. The relationship of DOM and hydrography to TEs showed that terrigenous and marine DOM were likely carriers of dissolved Fe, Ni, Cu from the Eurasian shelves into the central Arctic Ocean. Chukchi shelf sediments were important sources of dCd, dZn, and dNi, as well as marine ligands that bind and carry these TEs offshore within the upper halocline in the Canada Basin. Our data suggest that tDOM components represent stronger ligands relative to marine DOM components, potentially facilitating the long‐range transport of TE to the North Atlantic.

     
    more » « less