The detection of a gravitational-wave signal and subsequent electromagnetic transient from a neutron star merger in 2017 is consistent with expectations of neutron star mergers as an
- NSF-PAR ID:
- 10455462
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 268
- Issue:
- 1
- ISSN:
- 0067-0049
- Format(s):
- Medium: X Size: Article No. 22
- Size(s):
- Article No. 22
- Sponsoring Org:
- National Science Foundation
More Like this
-
Direct detection of gravitational waves (GWs) on 17 August 2017, propagating from a binary neutron star merger, or a “kilonova”, opened the era of multimessenger astronomy. The ejected material from neutron star mergers, or “kilonova”, is a good candidate for optical and near infrared follow-up observations after the detection of GWs. The kilonova from the ejecta of GW1780817 provided the first evidence for the astrophysical site of the synthesis of heavy nuclei through the rapid neutron capture process or r-process. Since properties of the emission are largely affected by opacities of the ejected material, enhancements in the available r-process data is important for neutron star merger modeling. However, given the complexity of the electronic structure of these heavy elements, considerable efforts are still needed to converge to a reliable set of atomic structure data. The aim of this work is to alleviate this situation for low charge state elements in the Os-like isoelectronic sequence. In this regard, the general-purpose relativistic atomic structure packages (GRASP0 and GRASP2K) were used to obtain energy levels and transition probabilities (E1 and M1). We provide line lists and expansion opacities for a range of r-process elements. We focus here on the Os isoelectronic sequence (Os I, Ir II, Pt III, Au IV, Hg V). The results are benchmarked against existing experimental data and prior calculations, and predictions of emission spectra relevant to kilonovae are provided. Fine-structure (M1) lines in the infrared potentially observable by the James Webb Space Telescope are highlighted.more » « less
-
ABSTRACT Neutron binary star mergers have long been proposed as sufficiently neutron rich environments that could support the synthesis of rapid neutron capture elements (r-process elements) such as gold. However, the literature reveals that beyond neutral and singly ionized systems, there is an incompleteness of atomic data for the remaining ion stages of importance for mergers. In this work, we report on relativistic atomic structure calculations for Au i–Au iii using the grasp0 codes. Comparisons to calculations using the Flexible Atomic Code suggest uncertainties on average of 9.2 per cent, 5.7 per cent, and 3.8 per cent for Au i–Au iii level energies. Agreement around ∼50 per cent is achieved between our computed A-values and those in the literature, where available. Using the grasp0 structure of Au i, we calculated electron-impact excitation rate coefficients and use a collisional-radiative model to explore the excitation dynamics and line ratio diagnostics possible in neutron star merger environments. We find that proper accounting of metastable populations is critical for extracting useful information from ultraviolet–visible line ratio diagnostics of Au i. As a test of our data, we applied our electron-impact data to study a gold hollow cathode spectrum in the literature and diagnosed the plasma conditions as Te = 3.1 ± 1.2 eV and $n_\textrm {e} = 2.7^{+1.3}_{-0.9}\times 10^{13}$ cm−3.more » « less
-
Abstract An extended version of the
R -matrix methodology is presented for calculation of radiative parameters for improved plasma opacities. Contrast and comparisons with existing methods primarily relying on the distorted wave approximation are discussed to verify accuracy and resolve outstanding issues, particularly with reference to the opacity project (OP). Among the improvements incorporated are: (i) large-scale Breit–PauliR -matrix calculations for complex atomic systems including fine structure, (ii) convergent close coupling wave function expansions for the (e + ion) system to compute oscillator strengths and photoionization cross sections, (iii) open and closed shell iron ions of interest in astrophysics and experiments, (iv) a treatment for plasma broadening of autoionizing resonances as function of energy-temperature-density dependent cross sections, (v) a ‘top-up’ procedure to compare convergence withR -matrix calculations for highly excited levels, and (vi) spectroscopic identification of resonances and bound (e + ion) levels. The presentR -matrix monochromatic opacity spectra are fundamentally different from OP and lead to enhanced Rosseland and Planck mean opacities. An outline of the work reported in other papers in this series and those in progress is presented. Based on the present re-examination of the OP work, opacities of heavy elements might require revisions in high temperature-density plasma sources. -
Abstract We study the production of very light elements (
Z < 20) in the dynamical and spiral-wave wind ejecta of binary neutron star mergers by combining detailed nucleosynthesis calculations with the outcome of numerical relativity merger simulations. All our models are targeted to GW170817 and include neutrino radiation. We explore different finite-temperature, composition-dependent nuclear equations of state, and binary mass ratios, and find that hydrogen and helium are the most abundant light elements. For both elements, the decay of free neutrons is the driving nuclear reaction. In particular, ∼0.5–2 × 10−6M ⊙of hydrogen are produced in the fast expanding tail of the dynamical ejecta, while ∼1.5–11 × 10−6M ⊙of helium are synthesized in the bulk of the dynamical ejecta, usually in association with heavyr -process elements. By computing synthetic spectra, we find that the possibility of detecting hydrogen and helium features in kilonova spectra is very unlikely for fiducial masses and luminosities, even when including nonlocal thermodynamic equilibrium effects. The latter could be crucial to observe helium lines a few days after merger for faint kilonovae or for luminous kilonovae ejecting large masses of helium. Finally, we compute the amount of strontium synthesized in the dynamical and spiral-wave wind ejecta, and find that it is consistent with (or even larger than, in the case of a long-lived remnant) the one required to explain early spectral features in the kilonova of GW170817. -
Abstract As LIGO-Virgo-KAGRA enters its fourth observing run, a new opportunity to search for electromagnetic counterparts of compact object mergers will also begin. The light curves and spectra from the first “kilonova” associated with a binary neutron star merger (NSM) suggests that these sites are hosts of the rapid neutron capture (“
r ”) process. However, it is unknown just how robust elemental production can be in mergers. Identifying signposts of the production of particular nuclei is critical for fully understanding merger-driven heavy-element synthesis. In this study, we investigate the properties of very neutron-rich nuclei for which superheavy elements (Z ≥ 104) can be produced in NSMs and whether they can similarly imprint a unique signature on kilonova light-curve evolution. A superheavy-element signature in kilonovae represents a route to establishing a lower limit on heavy-element production in NSMs as well as possibly being the first evidence of superheavy-element synthesis in nature. Favorable NSM conditions yield a mass fraction of superheavy elementsX Z ≥104≈ 3 × 10−2at 7.5 hr post-merger. With this mass fraction of superheavy elements, we find that the component of kilonova light curves possibly containing superheavy elements may appear similar to those arising from lanthanide-poor ejecta. Therefore, photometric characterizations of superheavy-element rich kilonova may possibly misidentify them as lanthanide-poor events.