skip to main content


Title: Tidal pumping and biogeochemical processes: Dissolution within the tidal capillary fringe of eogenetic coastal carbonates
Abstract

Growing evidence suggests microbial respiration of dissolved organic carbon (DOC) may be a principal driver of subsurface dissolution and cave formation in eogenetic carbonate rock. Analyses of samples of vadose zone gasses, and geochemical and hydrological data collected from shallow, uncased wells on San Salvador Island, Bahamas, suggest tidally varying water tables may help fuel microbial respiration and dissolution through oxygenation. Respiration of soil organic carbon transported to water tables generates dysaerobic to anaerobic groundwater, limiting aerobic microbial processes. Positive correlations of carbon dioxide (CO2), radon‐222 (222Rn) and water table elevation indicate, however, that tidal pumping of water tables pulls atmospheric air that is rich in oxygen, and low in CO2and222Rn, into contact with the tidal capillary fringe during falling tides. Ratios of CO2and O2in vadose gas relative to the atmosphere indicate this atmospheric oxygen fuels respiration within newly‐exposed, wetted bedrock. Deficits of expected CO2relative to O2concentrations indicate some respired CO2is likely removed by carbonate mineral dissolution. Tidal pumping also appears capable of transferring oxygen to the freshwater lens, where it could also contribute to respiration and dissolution; dissolved oxygen concentrations at the water table are at least 5% saturated and decline to anaerobic conditions 1–2 m below. Our results demonstrate how tidal pumping of air to vadose zones can drive mineral dissolution reactions that are focused near water tables and may contribute to the formation of laterally continuous vuggy horizons and potentially caves. © 2020 John Wiley & Sons, Ltd.

 
more » « less
NSF-PAR ID:
10455473
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Earth Surface Processes and Landforms
Volume:
45
Issue:
11
ISSN:
0197-9337
Page Range / eLocation ID:
p. 2675-2688
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Drylands occupy nearly 40% of the land surface and comprise a globally significant carbon reservoir. Dryland‐atmosphere carbon exchange may regulate interannual variability in atmospheric CO2. Quantifying soil respiration rates in these environments is often complicated by the presence of calcium carbonates, which are a common feature of dryland soils. We show with high‐precision O2measurements in a laboratory potted soil experiment that respiration rates after watering were similar in control and carbonate treatment soils. However, CO2concentrations were up to 72% lower in the carbonate treatment soil because CO2was initially consumed during calcite dissolution. Subsequently, CO2concentrations were over 166% greater in the carbonate treatment soil as respiration slowed and calcite precipitated, releasing CO2. Elevated δ13C values of soil CO2(>6‰ higher in the treatment than control) confirm that observed differences were due to calcite dissolution. These findings demonstrate that calcite dissolution and precipitation can occur rapidly enough to affect soil gas compositions and that changes in soil CO2are not always directly related to changes in soil respiration rates. Studies of local soil respiration rates and carbon exchange are likely to be influenced by dissolution and precipitation of calcium carbonates in soils. We estimate that one fifth of global soil respiration occurs in soils that contain some amount of soil carbonate, underscoring the need to account for its obscuring effects when trying to quantify soil respiration and net ecosystem exchange on a regional or global scale.

     
    more » « less
  2. Abstract

    A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full‐factorial 1‐m3mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land‐use‐induced changes in peatland hydrology can increase the vulnerability of peatland C stores.

     
    more » « less
  3. Abstract

    Coastal salt marshes store large amounts of carbon but the magnitude and patterns of greenhouse gas (GHG; i.e., carbon dioxide (CO2) and methane (CH4)) fluxes are unclear. Information about GHG fluxes from these ecosystems comes from studies of sediments or at the ecosystem‐scale (eddy covariance) but fluxes from tidal creeks are unknown. We measured GHG concentrations in water, water quality, meteorological parameters, sediment CO2efflux, ecosystem‐scale GHG fluxes, and plant phenology; all at half‐hour intervals over 1 year. Manual creek GHG flux measurements were used to calculate gas transfer velocity (k) and parameterize a model of water‐to‐atmosphere GHG fluxes. The creek was a source of GHGs to the atmosphere where tidal patterns controlled diel variability. Dissolved oxygen and wind speed were negatively correlated with creek CH4efflux. Despite lacking a seasonal pattern, creek CO2efflux was correlated with drivers such as turbidity across phenological phases. Overall, nighttime creek CO2efflux (3.6 ± 0.63 μmol/m2/s) was at least 2 times higher than nighttime marsh sediment CO2efflux (1.5 ± 1.23 μmol/m2/s). Creek CH4efflux (17.5 ± 6.9 nmol/m2/s) was 4 times lower than ecosystem‐scale CH4fluxes (68.1 ± 52.3 nmol/m2/s) across the year. These results suggest that tidal creeks are potential hotspots for CO2emissions and could contribute to lateral transport of CH4to the coastal ocean due to supersaturation of CH4(>6,000 μmol/mol) in water. This study provides insights for modeling GHG efflux from tidal creeks and suggests that changes in tide stage overshadow water temperature in determining magnitudes of fluxes.

     
    more » « less
  4. Oceanic uptake of anthropogenic carbon dioxide (CO 2 ) from the atmosphere has changed ocean biogeochemistry and threatened the health of organisms through a process known as ocean acidification (OA). Such large-scale changes affect ecosystem functions and can have impacts on societal uses, fisheries resources, and economies. In many large estuaries, anthropogenic CO 2 -induced acidification is enhanced by strong stratification, long water residence times, eutrophication, and a weak acid–base buffer capacity. In this article, we review how a variety of processes influence aquatic acid–base properties in estuarine waters, including coastal upwelling, river–ocean mixing, air–water gas exchange, biological production and subsequent aerobic and anaerobic respiration, calcium carbonate (CaCO 3 ) dissolution, and benthic inputs. We emphasize the spatial and temporal dynamics of partial pressure of CO 2 ( pCO 2 ), pH, and calcium carbonate mineral saturation states. Examples from three large estuaries—Chesapeake Bay, the Salish Sea, and Prince William Sound—are used to illustrate how natural and anthropogenic processes and climate change may manifest differently across estuaries, as well as the biological implications of OA on coastal calcifiers. 
    more » « less
  5. Abstract

    Existing analyses of salt marsh carbon budgets rarely quantify carbon loss as CO2through the air–water interface in inundated marshes. This study estimates the variability of partial pressure of CO2(pCO2) and air–water CO2fluxes over summer and fall of 2014 and 2015 using high‐frequency measurements of tidal waterpCO2in a salt marsh of the U.S. northeast region. Monthly mean CO2effluxes varied in the range of 5.4–25.6 mmol m−2marsh d−1(monthly median: 4.8–24.7 mmol m−2marsh d−1) during July to November from the tidal creek and tidally‐inundated vegetated platform. The source of CO2effluxes was partitioned between the marsh and estuary using a mixing model. The monthly mean marsh‐contributed CO2effluxes accounted for a dominant portion (69%) of total CO2effluxes in the inundated marsh, which was 3–23% (mean 13%) of the corresponding lateral flux rate of dissolved inorganic carbon (DIC) from marsh to estuary. Photosynthesis in tidal water substantially reduced the CO2evasion, accounting for 1–86% (mean 31%) of potential CO2evasion and 2–26% (mean 11%) of corresponding lateral transport DIC fluxes, indicating the important role of photosynthesis in controlling the air–water CO2evasion in the inundated salt marsh. This study demonstrates that CO2evasion from inundated salt marshes is a significant loss term for carbon that is fixed within marshes.

     
    more » « less