skip to main content


Title: A kinetic analysis of mouse rod and cone photoreceptor responses
Key points

Most vertebrate eyes have rods for dim‐light vision and cones for brighter light and higher temporal sensitivity.

Rods evolved from cone‐like precursors through expression of different transduction genes or the same genes at different expression levels, but we do not know which molecular differences were most important.

We approached this problem by analysing rod and cone responses with the same model but with different values for model parameters. We showed that, in addition to outer‐segment volume, the most important differences between rods and cones are: (1) decreased transduction gain, reflecting smaller amplification in the G‐protein cascade; (2) a faster rate of turnover of the second messenger cGMP in darkness; and (3) an accelerated rate of decay of the effector enzyme phosphodiesterase and perhaps also of activated visual pigment.

We believe our analysis has identified the principal alterations during evolution responsible for the duplex retina.

Abstract

Most vertebrates have rod and cone photoreceptors, which differ in their sensitivity and response kinetics. We know that rods evolved from cone‐like precursors through the expression of different transduction genes or the same genes at different levels, but we do not know which molecular differences were most important. We have approached this problem in mouse retina by analysing the kinetic differences between rod flash responses and recent voltage‐clamp recordings of cone flash responses, using a model incorporating the principal features of photoreceptor transduction. We apply a novel method of analysis using the log‐transform of the current, and we ask which of the model's dynamic parameters need be changed to transform the flash response of a rod into that of a cone. The most important changes are a decrease in the gain of the response, reflecting a reduction in amplification of the transduction cascade; an increase in the rate of turnover of cGMP in darkness; and an increase in the rate of decay of activated phosphodiesterase, with perhaps also an increase in the rate of decay of light‐activated visual pigment. Although we cannot exclude other differences, and in particular alterations in the Ca2+economy of the photoreceptors, we believe that we have identified the kinetic parameters principally responsible for the differences in the flash responses of the two kinds of photoreceptors, which were likely during evolution to have resulted in the duplex retina.

 
more » « less
NSF-PAR ID:
10455507
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Journal of Physiology
Volume:
598
Issue:
17
ISSN:
0022-3751
Page Range / eLocation ID:
p. 3747-3763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuhauss, Stephan C.F. (Ed.)
    In daylight, cone photoreceptors in the retina are responsible for the bulk of visual perception, yet compared to rods, far less is known quantitatively about their biochemistry. This is partly because it is hard to isolate and purify cone proteins. The issue is also complicated by the synergistic interaction of these parameters in producing systems biology outputs, such as photoresponse. Using a 3-D resolved, finite element model of cone outer segments, here we conducted a study of parameter significance using global sensitivity analysis, by Sobol indices , which was contextualized within the uncertainty surrounding these parameters in the available literature. The analysis showed that a subset of the parameters influencing the circulating dark current, such as the turnover rate of cGMP in the dark, may be most influential for variance with experimental flash response, while the shut-off rates of photoexcited rhodopsin and phosphodiesterase also exerted sizable effect. The activation rate of transducin by rhodopsin and the light-induced hydrolysis rate of cGMP exerted measurable effects as well but were estimated as relatively less significant. The results of this study depend on experimental ranges currently described in the literature and should be revised as these become better established. To that end, these findings may be used to prioritize parameters for measurement in future investigations. 
    more » « less
  2. Abstract

    The keen visual systems of birds have been relatively well-studied. The foundations of avian vision rest on their cone and rod photoreceptors. Most birds use four cone photoreceptor types for color vision, a fifth cone for achromatic tasks, and a rod for dim-light vision. The cones, along with their oil droplets, and rods are conserved across birds – with the exception of a few shifts in spectral sensitivity – despite taxonomic, behavioral and ecological differences. Here, however, we describe a novel photoreceptor organelle in a group of New World flycatchers (Empidonaxspp.) in which the traditional oil droplet is replaced with a complex of electron-dense megamitochondria surrounded by hundreds of small, orange oil droplets. The photoreceptors with this organelle were unevenly distributed across the retina, being present in the central region (including in the fovea), but absent from the retinal periphery and thearea temporalisof these insectivorous birds. Of the many bird species with their photoreceptors characterized, only the two flycatchers described here (E. virescens and E. minimus) possess this unusual retinal structure. We discuss the potential functional significance of this unique sub-cellular structure, which might provide an additional visual channel for these small predatory songbirds.

     
    more » « less
  3. Retinal rods evolved to be able to detect single photons. Despite their exquisite sensitivity, rods operate over many log units of light intensity. Several processes inside photoreceptor cells make this incredible light adaptation possible. Here, we added to our previously developed, fully space resolved biophysical model of rod phototransduction, some of the mechanisms that play significant roles in shaping the rod response under high illumination levels: the function of RGS9 in shutting off G protein transducin, and calcium dependences of the phosphorylation rates of activated rhodopsin, of the binding of cGMP to the light-regulated ion channel, and of two membrane guanylate cyclase activities. A well stirred version of this model captured the responses to bright, saturating flashes in WT and mutant mouse rods and was used to explain “Pepperberg plots,” that graph the time during which the response is saturated against the natural logarithm of flash strength for bright flashes. At the lower end of the range, saturation time increases linearly with the natural logarithm of flash strength. The slope of the relation (τ D ) is dictated by the time constant of the rate-limiting (slowest) step in the shutoff of the phototransduction cascade, which is the hydrolysis of GTP by transducin. We characterized mathematically the X-intercept ( Φ o ) which is the number of photoisomerizations that just saturates the rod response. It has been observed that for flash strengths exceeding a few thousand photoisomerizations, the curves depart from linearity. Modeling showed that the “upward bend” for very bright flash intensities could be explained by the dynamics of RGS9 complex and further predicted that there would be a plateau at flash strengths giving rise to more than ~10 7 photoisomerizations due to activation of all available PDE. The model accurately described alterations in saturation behavior of mutant murine rods resulting from transgenic perturbations of the cascade targeting membrane guanylate cyclase activity, and expression levels of GRK, RGS9, and PDE. Experimental results from rods expressing a mutant light-regulated channel purported to lack calmodulin regulation deviated from model predictions, suggesting that there were other factors at play. 
    more » « less
  4. Adaptive optics imaging has enabled the enhanced in vivo retinal visualization of individual cone and rod photoreceptors. Effective analysis of such high-resolution, feature rich images requires automated, robust algorithms. This paper describes RC-UPerNet, a novel deep learning algorithm, for identifying both types of photoreceptors, and was evaluated on images from central and peripheral retina extending out to 30° from the fovea in the nasal and temporal directions. Precision, recall and Dice scores were 0.928, 0.917 and 0.922 respectively for cones, and 0.876, 0.867 and 0.870 for rods. Scores agree well with human graders and are better than previously reported AI-based approaches.

     
    more » « less
  5. Abstract

    The retinae of many bird species contain a depression with high photoreceptor density known as the fovea. Many species of raptors have two foveae, a deep central fovea and a shallower temporal fovea. Birds have six types of photoreceptors: rods, active in dim light, double cones that are thought to mediate achromatic discrimination, and four types of single cones mediating color vision. To maximize visual acuity, the fovea should only contain photoreceptors contributing to high‐resolution vision. Interestingly, it has been suggested that raptors might lack double cones in the fovea. We used transmission electron microscopy and immunohistochemistry to evaluate this claim in five raptor species: the common buzzard (Buteo buteo), the honey buzzard (Pernis apivorus), the Eurasian sparrowhawk (Accipiter nisus), the red kite (Milvus milvus), and the peregrine falcon (Falco peregrinus). We found that all species, except the Eurasian sparrowhawk, lack double cones in the center of the central fovea. The size of the double cone‐free zone differed between species. Only the common buzzard had a double cone‐free zone in the temporal fovea. In three species, we examined opsin expression in the central fovea and found evidence that rod opsin positive cells were absent and violet‐sensitive cone and green‐sensitive cone opsin positive cells were present. We conclude that not only double cones, but also single cones may contribute to high‐resolution vision in birds, and that raptors may in fact possess high‐resolution tetrachromatic vision in the central fovea.

     
    more » « less