The controlled release of drugs using nanoparticle‐based delivery vehicles is a promising strategy to improve the safety and efficacy of chemotherapy. A simple, scalable, and reproducible strategy is developed to synthesize a drug delivery system (DDS) by loading 6‐maleimidocaproyl‐hydrazone doxorubicin (DOX‐EMCH) into the empty core of virus‐like particles (VLPs) derived from Physalis mottle virus (PhMV) via a combination of chemical conjugation to cysteine residues and π–π stacking interactions with the anchored doxorubicin molecule. The DOX‐EMCH prodrug features an acid‐sensitive hydrazine linker that triggers the release of doxorubicin in the slightly acidic extracellular tumor microenvironment or acidic endosomal or lysosomal compartments following cellular uptake. The VLP external surface is coated with polyethylene glycol (PEG) to prevent non‐specific uptake and improve biocompatibility. The DOX‐PhMV‐PEG particles are stable in vitro and show greater efficacy in vivo compared to free doxorubicin in a breast tumor mouse model (using MDA‐MB‐231 cells and nude mice): 92% of the tumor‐bearing mice treated with DOX‐PhMV‐PEG are completely cured compared to 27% of those treated with free doxorubicin under the same conditions, representing a 3.4‐fold improvement. These results lay a foundation for the further development of this biological drug delivery system for a new generation of chemotherapy products.
more » « less- PAR ID:
- 10455547
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology Journal
- Volume:
- 15
- Issue:
- 12
- ISSN:
- 1860-6768
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage.more » « less
-
This study describes the development of targeted, doxorubicin (DOX)‐loaded generation 5 (G5) polyamidoamine dendrimers able to achieve cell‐specific DOX delivery and release into the cytoplasm of hepatic cancer cells. G5 is functionalized with poly(ethylene glycol) (PEG) brushes displaying N‐acetylgalactosamine (NAcGal) ligands to target hepatic cancer cells. DOX is attached to G5 through one of two aromatic azo‐linkages, L3 or L4, achieving either
P1 ((NAcGalβ‐PEGc )16.6‐G5‐(L3‐DOX)11.6) orP2 ((NAcGalβ‐PEGc )16.6‐G5‐(L4‐DOX)13.4) conjugates. After confirming the conjugates' biocompatibility, flow cytometry studies show P1/P2 achieve 100% uptake into hepatic cancer cells at 30–60 × 10−9m particle concentration. This internalization correlates with cytotoxicity against HepG2 cells with 50% inhibitory concentration (IC50) values of 24.8, 1414.0, and 237.8 × 10−9m for free DOX, P1, and P2, respectively. Differences in cytotoxicity prompted metabolomics analysis to identify the intracellular release behavior of DOX. Results show that P1/P2 release alternative DOX metabolites than free DOX. Stable isotope tracer studies show that the different metabolites induce different effects on metabolic cycles. Namely, free DOX reduces glycolysis and increases fatty acid oxidation, while P1/P2 increase glycolysis, likely as a response to high oxidative stress. Overall, P1/P2 conjugates offer a platform drug delivery technology for improving hepatic cancer therapy. -
Abstract It is considered a significant challenge to construct nanocarriers that have high drug loading capacity and can overcome physiological barriers to deliver efficacious amounts of drugs to solid tumors. Here, the development of a safe, biconcave carbon nanodisk to address this challenge for treating breast cancer is reported. The nanodisk demonstrates fluorescent imaging capability, an exceedingly high loading capacity (947.8 mg g−1, 94.78 wt%) for doxorubicin (DOX), and pH‐responsive drug release. It exhibits a higher uptake rate by tumor cells and greater accumulation in tumors in a mouse model than its carbon nanosphere counterpart. In addition, the nanodisk absorbs and transforms near‐infrared (NIR) light to heat, which enables simultaneous NIR‐responsive drug release for chemotherapy and generation of thermal energy for tumor cell destruction. Notably, this NIR‐activated dual therapy demonstrates a near complete suppression of tumor growth in a mouse model of triple‐negative breast cancer when DOX‐loaded nanodisks are administered systemically.
-
Abstract Combination chemotherapy must strike a difficult balance between safety and efficacy. Current regimens suffer from poor therapeutic impact because drugs are given at their maximum tolerated dose (MTD), which compounds the toxicity risk and exposes tumors to non‐optimal drug ratios. A modular framework has been developed that selectively delivers drug combinations at synergistic ratios via tumor‐targeting aptamers for effective low‐dose treatment. A nucleolin‐recognizing aptamer was coupled to peptide scaffolds laden with precise ratios of doxorubicin (DOX) and camptothecin (CPT). This construct had an extremely low IC50(31.9 n
m ) against MDA‐MB‐231 breast cancer cells in vitro, and exhibited in vivo efficacy at micro‐dose injections (500 and 350 μg kg−1 dose−1of DOX and CPT, respectively) that are 20–30‐fold lower than their previously‐reported MTDs. This approach represents a generalizable strategy for the safe and consistent delivery of combination drugs in oncology. -
Abstract Combination chemotherapy must strike a difficult balance between safety and efficacy. Current regimens suffer from poor therapeutic impact because drugs are given at their maximum tolerated dose (MTD), which compounds the toxicity risk and exposes tumors to non‐optimal drug ratios. A modular framework has been developed that selectively delivers drug combinations at synergistic ratios via tumor‐targeting aptamers for effective low‐dose treatment. A nucleolin‐recognizing aptamer was coupled to peptide scaffolds laden with precise ratios of doxorubicin (DOX) and camptothecin (CPT). This construct had an extremely low IC50(31.9 n
m ) against MDA‐MB‐231 breast cancer cells in vitro, and exhibited in vivo efficacy at micro‐dose injections (500 and 350 μg kg−1 dose−1of DOX and CPT, respectively) that are 20–30‐fold lower than their previously‐reported MTDs. This approach represents a generalizable strategy for the safe and consistent delivery of combination drugs in oncology.