What can eye movements reveal about reading, a complex skill ubiquitous in everyday life? Research suggests that gaze can measure short-term comprehension for facts, but it is unknown whether it can measure long-term, deep comprehension. We tracked gaze while 147 participants read long, connected, in-formative texts and completed assessments of rote (factual) and inference (connecting ideas) comprehension while reading a text, after reading a text, after reading five texts, and after a seven-day delay. Gaze-based student-independent computa-tional models predicted both immediate and long-term rote and inference comprehension with moderate accuracies. Surprising-ly, the models were most accurate for comprehension assessed after reading all texts and predicted comprehension even after a week-long delay. This shows that eye movements can provide a lens into the cognitive processes underlying reading compre-hension, including inference formation, and the consolidation of information into long-term memory, which has implications for intelligent student interfaces that can automatically detect and repair comprehension in real-time.
more »
« less
What Eye Movements Reveal About Later Comprehension of Long Connected Texts
Abstract We know that reading involves coordination between textual characteristics and visual attention, but research linking eye movements during reading and comprehension assessed after reading is surprisingly limited, especially for reading long connected texts. We tested two competing possibilities: (a) the weak association hypothesis: Links between eye movements and comprehension are weak and short‐lived, versus (b) the strong association hypothesis: The two are robustly linked, even after a delay. Using a predictive modeling approach, we trained regression models to predict comprehension scores from global eye movement features, using participant‐level cross‐validation to ensure that the models generalize across participants. We used data from three studies in which readers (Ns = 104, 130, 147) answered multiple‐choice comprehension questions ~30 min after reading a 6,500‐word text, or after reading up to eight 1,000‐word texts. The models generated accurate predictions of participants' text comprehension scores (correlations between observed and predicted comprehension: 0.384, 0.362, 0.372,ps < .001), in line with the strong association hypothesis. We found that making more, but shorter fixations, consistently predicted comprehension across all studies. Furthermore, models trained on one study's data could successfully predict comprehension on the others, suggesting generalizability across studies. Collectively, these findings suggest that there is a robust link between eye movements and subsequent comprehension of a long connected text, thereby connecting theories of low‐level eye movements with those of higher order text processing during reading.
more »
« less
- Award ID(s):
- 1920510
- PAR ID:
- 10455565
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Cognitive Science
- Volume:
- 44
- Issue:
- 10
- ISSN:
- 0364-0213
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ribeiro, Haroldo V. (Ed.)Reading is a complex cognitive process that involves primary oculomotor function and high-level activities like attention focus and language processing. When we read, our eyes move by primary physiological functions while responding to language-processing demands. In fact, the eyes perform discontinuous twofold movements, namely, successive long jumps (saccades) interposed by small steps (fixations) in which the gaze “scans” confined locations. It is only through the fixations that information is effectively captured for brain processing. Since individuals can express similar as well as entirely different opinions about a given text, it is therefore expected that the form, content and style of a text could induce different eye-movement patterns among people. A question that naturally arises is whether these individuals’ behaviours are correlated, so that eye-tracking while reading can be used as a proxy for text subjective properties. Here we perform a set of eye-tracking experiments with a group of individuals reading different types of texts, including children stories, random word generated texts and excerpts from literature work. In parallel, an extensive Internet survey was conducted for categorizing these texts in terms of their complexity and coherence, considering a large number of individuals selected according to different ages, gender and levels of education. The computational analysis of the fixation maps obtained from the gaze trajectories of the subjects for a given text reveals that the average “magnetization” of the fixation configurations correlates strongly with their complexity observed in the survey. Moreover, we perform a thermodynamic analysis using the Maximum-Entropy Model and find that coherent texts were closer to their corresponding “critical points” than non-coherent ones, as computed from the Pairwise Maximum-Entropy method, suggesting that different texts may induce distinct cohesive reading activities.more » « less
-
null (Ed.)Program comprehension is a vital skill in software development. This work investigates program comprehension by examining the eye movement of novice programmers as they gain programming experience over the duration of a Java course. Their eye movement behavior is compared to the eye movement of expert programmers. Eye movement studies of natural text show that word frequency and length influence eye movement duration and act as indicators of reading skill. The study uses an existing longitudinal eye tracking dataset with 20 novice and experienced readers of source code. The work investigates the acquisition of the effects of token frequency and token length in source code reading as an indication of program reading skill. The results show evidence of the frequency and length effects in reading source code and the acquisition of these effects by novices. These results are then leveraged in a machine learning model demonstrating how eye movement can be used to estimate programming proficiency and classify novices from experts with 72% accuracy.more » « less
-
null (Ed.)Studies of eye movements during source code reading have supported the idea that reading source code differs fundamentally from reading natural text. The paper analyzed an existing data set of natural language and source code eye movement data using the E-Z reader model of eye movement control. The results show that the E-Z reader model can be used with natural text and with source code where it provides good predictions of eye movement duration. This result is confirmed by comparing model predictions to eye-movement data from this experiment and calculating the correlation score for each metric. Finally, it was found that gaze duration is influenced by token frequency in code and in natural text. The frequency effect is less pronounced on first fixation duration and single fixation duration. An eye movement control model for source code reading may open the door for tools in education and the industry to enhance program comprehension.more » « less
-
Contemporary autoregressive language models (LMs) trained purely on corpus data have been shown to capture numerous features of human incremental processing. However, past work has also suggested dissociations between corpus probabilities and human next-word predictions. Here we evaluate several state-of-the-art language models for their match to human next-word predictions and to reading time behavior from eye movements. We then propose a novel method for distilling the linguistic information implicit in human linguistic predictions into pre-trained LMs: Cloze Distillation. We apply this method to a baseline neural LM and show potential improvement in reading time prediction and generalization to held-out human cloze data.more » « less
An official website of the United States government
