skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Southern Ocean Upwelling and the Marine Iron Cycle
Abstract The iron (Fe) supply to phytoplankton communities in the Southern Ocean surface exerts a strong control on oceanic carbon storage and global climate. Hydrothermal vents are one potential Fe source to this region, but it is not known whether hydrothermal Fe persists in seawater long enough to reach the surface before it is removed by particle scavenging. A new study (Jenkins, 2020,https://doi.org/10.1029/2020GL087266) fills an important gap in this puzzle: a helium‐3 mass balance model is used to show that it takes ~100 yr for deep hydrothermally influenced waters to upwell to the surface around Antarctica. However, estimates of Fe scavenging time scales range from tens to hundreds of years and must be more narrowly constrained to fully resolve the role of hydrothermal Fe in the ocean's biological pump.  more » « less
Award ID(s):
1658042
PAR ID:
10455580
Author(s) / Creator(s):
 
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. 
    more » « less
  2. Abstract Recent advances in remote sensing of solar‐induced chlorophyll fluorescence (SIF) have garnered wide interest from the biogeoscience and Earth system science communities, due to the observed linearity between SIF and gross primary productivity (GPP) at increasing spatiotemporal scales. Three recent studies, Maguire et al., (2020,https://doi.org/10.1029/2020GL087858), He et al. (2020,https://doi.org/10.1029/2020GL087474), and Marrs et al. (2020,https://doi.org/10.1029/2020GL087956) highlight a nonlinear relationship between fluorescence and photochemical yields and show empirical evidence for the decoupling of SIF, stomata, and the carbon reactions of photosynthesis. Such mechanistic studies help advance our understanding of what SIF is and what it is not. We argue that these findings are not necessarily contradictory to the linear SIF‐GPP relationship observed at the satellite scale and provide context for where, when, and why fluorescence and photosynthesis diverge at smaller spatiotemporal scales. Understanding scale dependencies of remote sensing data is crucial for interpreting SIF as a proxy for GPP. 
    more » « less
  3. Abstract This letter compares the predictions of two expressions proposed for the porosity evolution in the context of rate and state friction. One (Segall & Rice, 1995,https://doi.org/10.1029/95jb02403) depends only on the sliding velocity; the other (Sleep, 1995,https://doi.org/10.1029/94jb03340) depends only on the state variable. Simulations of both are similar for velocity stepping and slide‐hold‐slide experiments. They differ significantly for normal effective stress jumps at constant sliding velocity. Segall and Rice (1995,https://doi.org/10.1029/95jb02403) predicts no change in the porosity; Sleep (1995,https://doi.org/10.1029/94jb03340) does. Simulation with a spring‐block model indicates that the magnitude of rapid slip events is essentially the same for the two formulations. Variations of porosity and induced pore pressure near rapid slip events are similar and consistent with experimental observations. Predicted porosity variations during slow slip intervals and the time at which rapid slip events occur are significantly different. The simulation indicates that changes in friction stress due to pore pressure changes exceed those due to rate and state effects. 
    more » « less
  4. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less
  5. Abstract We show that atmospheric gravity waves can generate plasma ducts and irregularities in the plasmasphere using the coupled SAMI3/WACCM‐X model. We find the equatorial electron density is irregular as a function of longitude which is consistent with CRRES measurements (Clilverd et al., 2007,https://doi.org/10.1029/2007ja012416). We also find that plasma ducts can be generated forL‐shells in the range 1.5–3.0 with lifetimes of ∼ 0.5 hr; this is in line with observations of ducted VLF wave propagation with lifetimes of 0.5–2.0 hr (Clilverd et al., 2008,https://doi.org/10.1029/2007ja012602; Singh et al., 1998,https://doi.org/10.1016/s1364-6826(98)00001-7). 
    more » « less