In our previous study, electrically induced mechanical stress was produced on monolithic polycarbonate (PC) films under a DC voltage using a needle‐plane electrode setup. This study investigated other materials with various structures and dielectric constants, in order to further understand the deformation mechanism. It was found that the elastic behavior occurred at electric fields intensities below that initiating measurable surface deformation. The amorphous materials, PS, and the semi‐crystalline materials, HDPE and PP, having dielectric constants all around 2.5, exhibited a similar observable deformation onset electric field at 200 MV/m. While PVDF, having a dielectric constant of 10.0–12.0, showed an onset at only 30 MV/m. The data was also compared to our previous study on PC. The depth and diameter of the deformation for all materials increased relative to the applied electric field up to film breakdown. Thermal annealing of the deformed films revealed a recoverable “delayed elastic” component and an irreversible “plastic” component. A three‐stage electrically induced mechanical deformation mechanism was proposed for amorphous materials, while a two‐stage mechanism was proposed for the semi‐crystalline materials. The difference on the energy loss versus deformed volume for amorphous and semi‐crystalline polymers was also determined and discussed.
Electrically induced mechanical stress was produced on a monolithic polycarbonate (PC) film when subjected to an instantaneous direct current voltage using a needle‐plane electrode setup. Three different experimental methods were used to investigate the electrically induced mechanical deformation on the glassy PC film, namely, morphological observation, energy loss analysis, and dielectric hysteresis study. It was found that the PC film exhibited elastic behavior at the nominal electric field below 200 MV m−1, showing no indentation on the film surface. When the nominal field was above 200 MV m−1, a spherical indentation was created. The depth and diameter of the deformation increased in response to the applied electric field. Subsequent thermal annealing of the deformed film revealed a recoverable “delayed elastic” and an unrecoverable “plastic” deformation. A three‐stage electrically induced mechanical deformation mechanism was proposed based on the experimental results, including a correlation between the energy loss and the deformed volume. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.
- PAR ID:
- 10455662
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Applied Polymer Science
- Volume:
- 137
- Issue:
- 5
- ISSN:
- 0021-8995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Biomaterials with outstanding mechanical properties, including spider silk, wood, and cartilage, often feature an oriented nanofibrillar structure. The orientation of nanofibrils gives rise to a significant mechanical anisotropy, which is extremely challenging to characterize, especially for microscopically small or inhomogeneous samples. Here, a technique utilizing atomic force microscope indentation at multiple points combined with finite element analysis to sample the mechanical anisotropy of a thin film in a microscopically small area is reported. The system studied here is the tape‐like silk of the Chilean recluse spider, which entirely consists of strictly oriented nanofibrils giving rise to a large mechanical anisotropy. The most detailed directional nanoscale structure–property characterization of spider silk to date is presented, revealing the tensile and transverse elastic moduli as 9 and 1 GPa, respectively, and the binding strength between silk nanofibrils as 159
± 13 MPa. Furthermore, based on this binding strength, the nanofibrils’ surface energy is derived as 37 mJ m−2, and concludes that van der Waals forces play a decisive role in interfibrillar binding. Due to its versatility, this technique has many potential applications, including early disease diagnostics, as underlying pathological conditions can alter the local mechanical properties of tissues. -
Abstract Mechanical stress can directly activate chemical reactions by reducing the reaction energy barrier. A possible mechanism of such mechanochemical activation is structural deformation of the reactant species. However, the effect of deformation on the reaction energetics is unclear, especially, for shear stress-driven reactions. Here, we investigated shear stress-driven oligomerization reactions of cyclohexene on silica using a combination of reactive molecular dynamics simulations and ball-on-flat tribometer experiments. Both simulations and experiments captured an exponential increase in reaction yield with shear stress. Elemental analysis of ball-on-flat reaction products revealed the presence of oxygen in the polymers, a trend corroborated by the simulations, highlighting the critical role of surface oxygen atoms in oligomerization reactions. Structural analysis of the reacting molecules in simulations indicated the reactants were deformed just before a reaction occurred. Quantitative evidence of shear-induced deformation was established by comparing bond lengths in cyclohexene molecules in equilibrium and prior to reactions. Nudged elastic band calculations showed that the deformation had a small effect on the transition state energy but notably increased the reactant state energy, ultimately leading to a reduction in the energy barrier. Finally, a quantitative relationship was developed between molecular deformation and energy barrier reduction by mechanical stress.
-
Abstract Indentation testing is the most common approach to quantify mechanical brain tissue properties. Despite a myriad of studies conducted already, reported stiffness values vary extensively and continue to be subject of study. Moreover, the growing interest in the relationship between the brain's spatially heterogeneous microstructure and local tissue stiffness warrants the development of standardized measurement protocols to enable comparability between studies and assess repeatability of reported data. Here, we present three individual protocols that outline (1) sample preparation of a 1000‐µm thick coronal slice, (2) a comprehensive list of experimental parameters associated with the FemtoTools FT‐MTA03 Micromechanical Testing System for spherical indentation, and (3) two different approaches to derive the elastic modulus from raw force‐displacement data. Lastly, we demonstrate that our protocols deliver a robust experimental framework that enables us to determine the spatially heterogeneous microstructural properties of (mouse) brain tissue. © 2024 Wiley Periodicals LLC.
Basic Protocol 1 : Mouse brain sample preparationBasic Protocol 2 : Indentation testing of mouse brain tissue using the FemtoTools FT‐MTA03 Micromechanical Testing and Assembly SystemBasic Protocol 3 : Tissue stiffness identification from force‐displacement data -
Abstract The electrically‐directed, isothermal response of liquid crystal elastomers (LCEs) to an applied electric field is a compelling approach to realize spatially tailorable, sequence‐controllable, and high‐frequency deformation. The electromechanical response is facilitated by coating aligned LCEs with compliant electrodes. Upon application of an electric field, the electrodes attract and generate Maxwell stress. The directional difference in moduli for aligned LCEs produces directional deformation of the material and does not require mechanical bias or framing. Here, LCEs prepared from a newly reported thiol‐ene reaction are explored as DEAs with improved mechanical and dielectric properties. This report details that incorporating a difunctional liquid crystalline monomer composed of allyl ether functional groups reduces Young's modulus, increases the dielectric constant, and improves cyclic recovery compared to an analogous LCE prepared by thiol‐ene polymerization. Electrically‐induced, isothermal deformation of as much as 30% strain is reported. The facile chemistry and enhanced electromechanical response reported here may enable the functional integration of LCEs in applications such as robotics.