How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the
In addition to camouflage and chemical toxicity, many caterpillars defend themselves against predators with sudden sharp movements. For smaller species, these movements propel the body away from the threat, but in larger caterpillars, such as the tobacco hornworm,
- NSF-PAR ID:
- 10455680
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Comparative Neurology
- Volume:
- 528
- Issue:
- 5
- ISSN:
- 0021-9967
- Page Range / eLocation ID:
- p. 805-815
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior. -
Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered thatmore » « less
Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on theDrosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming. -
Sengupta, Piali (Ed.)We present a high-throughput optogenetic illumination system capable of simultaneous closed-loop light delivery to specified targets in populations of moving Caenorhabditis elegans . The instrument addresses three technical challenges: It delivers targeted illumination to specified regions of the animal’s body such as its head or tail; it automatically delivers stimuli triggered upon the animal’s behavior; and it achieves high throughput by targeting many animals simultaneously. The instrument was used to optogenetically probe the animal’s behavioral response to competing mechanosensory stimuli in the the anterior and posterior gentle touch receptor neurons. Responses to more than 43,418 stimulus events from a range of anterior–posterior intensity combinations were measured. The animal’s probability of sprinting forward in response to a mechanosensory stimulus depended on both the anterior and posterior stimulation intensity, while the probability of reversing depended primarily on the anterior stimulation intensity. We also probed the animal’s response to mechanosensory stimulation during the onset of turning, a relatively rare behavioral event, by delivering stimuli automatically when the animal began to turn. Using this closed-loop approach, over 9,700 stimulus events were delivered during turning onset at a rate of 9.2 events per worm hour, a greater than 25-fold increase in throughput compared to previous investigations. These measurements validate with greater statistical power previous findings that turning acts to gate mechanosensory evoked reversals. Compared to previous approaches, the current system offers targeted optogenetic stimulation to specific body regions or behaviors with many fold increases in throughput to better constrain quantitative models of sensorimotor processing.more » « less
-
Abstract Intracortical microstimulation (ICMS) is commonly used in many experimental and clinical paradigms; however, its effects on the activation of neurons are still not completely understood. To document the responses of cortical neurons in awake nonhuman primates to stimulation, we recorded single-unit activity while delivering single-pulse stimulation via Utah arrays implanted in primary motor cortex (M1) of three macaque monkeys. Stimuli between 5 and 50 μA delivered to single channels reliably evoked spikes in neurons recorded throughout the array with delays of up to 12 ms. ICMS pulses also induced a period of inhibition lasting up to 150 ms that typically followed the initial excitatory response. Higher current amplitudes led to a greater probability of evoking a spike and extended the duration of inhibition. The likelihood of evoking a spike in a neuron was dependent on the spontaneous firing rate as well as the delay between its most recent spike time and stimulus onset. Tonic repetitive stimulation between 2 and 20 Hz often modulated both the probability of evoking spikes and the duration of inhibition; high-frequency stimulation was more likely to change both responses. On a trial-by-trial basis, whether a stimulus evoked a spike did not affect the subsequent inhibitory response; however, their changes over time were often positively or negatively correlated. Our results document the complex dynamics of cortical neural responses to electrical stimulation that need to be considered when using ICMS for scientific and clinical applications.
-
Specific features of visual objects innately draw approach responses in animals, and provide natural signals of potential reward. However, visual sampling behaviours and the detection of salient, rewarding stimuli are context and behavioural state-dependent and it remains unclear how visual perception and orienting responses change with specific expectations. To start to address this question, we employed a virtual stimulus orienting paradigm based on prey capture to quantify the conditional expression of visual stimulus-evoked innate approaches in freely moving mice. We found that specific combinations of stimulus features selectively evoked innate approach or freezing responses when stimuli were unexpected. We discovered that prey capture experience, and therefore the expectation of prey in the environment, selectively modified approach frequency, as well as altered those visual features that evoked approach. Thus, we found that mice exhibit robust and selective orienting responses to parameterized visual stimuli that can be robustly and specifically modified via natural experience. This work provides critical insight into how natural appetitive behaviours are driven by both specific features of visual motion and internal states that alter stimulus salience.