Despite the excellent physical properties of single‐component Eu3+–Tb3+‐containing metallopolymers, the development of their flexible white polymer light‐emitting diodes (WPLEDs) for portable full‐color flat displays remains a formidable challenge. Herein, the WPLEDs from a metallopolymer
Two bipolar host materials
- NSF-PAR ID:
- 10455685
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Poly(NVK‐ are reported, in which [Eu(DBM)3(4‐vp‐PBI)] (co ‐2‐co ‐7)2 ) and [Tb(tba‐PMP)3(4‐vp‐PBI)] (7 ) with different localized circumstances are grafted into poly(N ‐vinyl‐carbarzole) (PVK). In this design, both Dexter and Förster energy transfers occur, which endow a photoluminescent quantum yield up to 22.3% of the straightforward high‐quality white‐lights. Contributing from the stepwise alignment of frontier molecular orbitals ofPoly(NVK‐ as the emitting layer in combination with CBP‐ and BCP‐assisted carrier‐transports, a reliable WPLED with the record‐renewed electroluminescent performance (co ‐2‐co ‐7)L Max= 388.0 cd m−2, ηcMax= 31.1 cd A−1, ηpMax= 15.0 lm W−1, ηEQEMax= 18.1%, and weak efficiency‐roll‐off) among previous organo‐Ln3+‐based white organic light‐emitting diodes/WPLEDs is achieved. This finding renders a single‐component Eu3+–Tb3+‐containing metallopolymers a potential new platform to cost‐effective flexible WPLEDs for practical applications. -
Abstract Zero‐dimensional (0D) organic metal halide hybrids (OMHHs) have recently emerged as a new class of light emitting materials with exceptional color tunability. While near‐unity photoluminescence quantum efficiencies (PLQEs) are routinely obtained for a large number of 0D OMHHs, it remains challenging to apply them as emitter for electrically driven light emitting diodes (LEDs), largely due to the low conductivity of wide bandgap organic cations. Here, the development of a new OMHH, triphenyl(9‐phenyl‐9H‐carbazol‐3‐yl) phosphonium antimony bromide (TPPcarzSbBr4), as emitter for efficient LEDs, which consists of semiconducting organic cations (TPPcarz+) and light emitting antimony bromide anions (Sb2Br82−), is reported. By replacing one of the phenyl groups in a well‐known tetraphenylphosphonium cation (TPP+) with an electroactive phenylcarbazole group, a semiconducting TPPcarz+cation is developed for the preparation of red emitting 0D TPPcarzSbBr4single crystals with a high PLQE of 93.8%. With solution processed TPPcarzSbBr4thin films (PLQE of 86.1%) as light emitting layer, red LEDs are fabricated to exhibit an external quantum efficiency (EQE) of 5.12%, a peak luminance of 5957 cd m−2, and a current efficiency of 14.2 cd A−1, which are the best values reported to date for electroluminescence devices based on 0D OMHHs.
-
This study presents the synthesis and characterization of two spirobifluorenyl derivatives substituted with either triphenylmethyl (SB-C) or triphenylsilyl (SB-Si) moieties for use as host materials in phosphorescent organic light-emitting diodes (PHOLED). Both molecules have similar high triplet energies and large energy gaps. Blue Ir(tpz)3 and green Ir(ppy)3 phosphorescent devices were fabricated using these materials as hosts. Surprisingly, SB-Si demonstrated superior charge-transporting ability compared to SB-C, despite having similar energies for their valence orbitals. In particular, SB-Si proved to be a highly effective host for both blue and green devices, resulting in maximum efficiencies of 12.6% for the Ir(tpz)3 device and 9.6% for the Ir(ppy)3 device. These results highlight the benefits of appending the triphenylsilyl moiety onto host materials and underscore the importance of considering the morphology of hosts in the design of efficient PHOLEDs.
-
Abstract Two cove‐edge graphene nanoribbons hPDI2‐Pyr‐hPDI2 (
1 ) and hPDI3‐Pyr‐hPDI3 (2 ) are used as efficient electron‐transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power‐conversion efficiencies (PCEs) of 15.6 % and 16.5 % for1 and2 , respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that1 and2 act as efficient electron‐extraction materials. Additionally, compared with PC61BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability. -
Abstract Two cove‐edge graphene nanoribbons hPDI2‐Pyr‐hPDI2 (
1 ) and hPDI3‐Pyr‐hPDI3 (2 ) are used as efficient electron‐transporting materials (ETMs) in inverted planar perovskite solar cells (PSCs). Devices based on the new graphene nanoribbons exhibit maximum power‐conversion efficiencies (PCEs) of 15.6 % and 16.5 % for1 and2 , respectively, while a maximum PCE of 14.9 % is achieved with devices based on [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM). The interfacial effects induced by these new materials are studied using photoluminescence (PL), and we find that1 and2 act as efficient electron‐extraction materials. Additionally, compared with PC61BM, these new materials are more hydrophobic and have slightly higher LUMO energy levels, thus providing better device performance and higher device stability.