skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: OTREC2019: Convection Over the East Pacific and Southwest Caribbean
Abstract We present preliminary results from the field program Organization of Tropical East Pacific Convection (OTREC), with measurements during August and September of 2019 using the NSF/NCAR Gulfstream V over the tropical East Pacific and Southwest Caribbean. We found that active convection in this region has predominantly bottom‐heavy vertical mass fluxes, while decaying systems exhibit top‐heavy fluxes characteristic of stratiform rain regions. As in other regions that have been studied, a strong anti‐correlation exists between the low to mid‐level moist convective instability and the column relative humidity or saturation fraction. Finally, the characteristics of convection as a function of latitude differ greatly between the Southwest Caribbean and Colombian Pacific coast on one hand, and the intertropical convergence zone to the west. In particular, the strongest convection in the former is to the south, while it is to the north in the latter, in spite of similar latitudinal sea surface temperature distributions.  more » « less
Award ID(s):
1758513
PAR ID:
10455687
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Convection observed in the OTREC field program in the tropical east Pacific and southwest Caribbean is simulated using a cloud‐resolving model employing the weak temperature gradient approximation. Simulations are made using reference profiles derived from three‐dimensional variational analyses of dropsonde data selected for different ranges of saturation fraction, a kind of column relative humidity. For each of these humidity ranges, two simulations are performed, one with ventilation of the model domain by the ambient wind (a new model feature) and one without this ventilation. The model results using ventilation are much closer to observation than those without ventilation, especially for drier environments. These results have strong implications for the distribution of ITCZ convection in the east Pacific and for the construction of cumulus parameterizations. 
    more » « less
  2. Abstract This study investigates the vertical structure and related dynamical and energy conversion processes that aided the development of two east Pacific easterly waves (EWs) during the 2019 OTREC (Organization of Tropical East Pacific Convection) campaign period. The initial mesoscale convective systems (MCSs) that seeded both disturbances formed near the Panama Bight and developed into EWs near the Papagayo jet exit region. In the MCS stage, both disturbances were characterized by top‐heavy vertical motions and midlevel vorticity near the maximum vorticity center. The deep convection caused strong latent heating and eddy available potential energy (EAPE) generation and conversion to eddy kinetic energy (EKE) in the upper levels. When the disturbances moved to the south of the Papagayo jet, they interacted with the low‐level shear vorticity there, enhancing low‐level stretching and vorticity. Subsequently, the top‐heavy upward motion intensified and led to enhanced stretching and vorticity intensification at midlevels. The enhanced stretching on the southwest side also favored the formation of southwest‐northeast tilted vorticity at midlevels that characterizes EWs. After the EWs formed near the jet exit, the vertical motion weakened and became more bottom‐heavy, with the maximum vorticity shifting to lower levels. This change in the vertical motion profile near the jet exit region is likely modulated by the lower sea surface temperature, reduced moisture, and weaker convective instability. While EAPE‐to‐EKE conversion weakened during this period, the low‐level barotropic conversion of EKE in the jet exit served as the primary energy source for the EWs. 
    more » « less
  3. Abstract Studying convection, which is one of the least understood physical mechanisms in the tropical atmosphere, is very important for weather and climate predictions of extreme events such as storms, hurricanes, monsoons, floods and hail. Collecting more observations to do so is critical. It is also a challenge. The OTREC (Organization of Tropical East Pacific Convection) field project took place in the summer of 2019. More than thirty scientists and twenty students from the US, Costa Rica, Colombia, México and UK were involved in collecting observations over the ocean (East Pacific and Caribbean) and land (Costa Rica, Colombia). We used the NSF NCAR Gulfstream V airplane to fly at 13 kilometers altitude sampling the tropical atmosphere under diverse weather conditions. The plane was flown in a ‘lawnmower’ pattern and every 10 minutes deployed dropsondes that measured temperature, wind, humidity and pressure from flight level to the ocean. Similarly, over the land we launched radiosondes, leveraged existing radars and surface meteorological networks across the region, some with co-located Global Positioning System (GPS) receivers and rain sensors, and installed a new surface GPS meteorological network across Costa Rica, culminating in an impressive systematic data set that when assimilated into weather models immediately gave better forecasts. We are now closer than ever in understanding the environmental conditions necessary for convection as well as how convection influences extreme events. The OTREC data set continues to be studied by researchers all over the globe. This article aims to describe the lengthy process that precedes science breakthroughs. 
    more » « less
  4. Abstract. The Organization of Tropical East Pacific Convection (OTREC) field campaign, conducted August through October 2019, focuses on studying convection in the eastern Pacific and the Caribbean. An unprecedented number of dropsondes were deployed (648) during 22 missions to study the region of strong sea surface temperature (SST) gradients in the eastern Pacific region, the region just off the coast of Columbia, and in the uniform SST region in the southwestern Caribbean. The dropsondes were assimilated in the European Centre for Medium-Range Weather Forecasts (ECMWF) model. This study quantifies departures, observed minus the model value of a variable, in dropsonde denial experiments and studies time series of convective variables, saturation fraction which measures moisture and instability index and deep convective inhibition which quantify atmospheric stability and boundary layer stability to convection, respectively.Departures are small whether dropsondes are assimilated or not, except in a special case of developing convection and organization prior to Tropical Storm Ivo where wind departures are significantly larger when dropsondes are not assimilated. Departures are larger in cloudy regions compared to cloud-free regions when comparing a vertically integrated departure with a cloudiness estimation. Abovementioned variables are all well represented by the model when compared to observations, with some systematic deviations in and above the boundary layer. Time series of these variables show artificial convective activity in the model, in the eastern Pacific region off the coast of Costa Rica, which we hypothesize occurs due to the overestimation of moisture content in that region. 
    more » « less
  5. Abstract Data from recent field programs studying deep convection may be useful in constraining cumulus parameterizations. To this end, gridded dropsonde analyses are made using data from the OTREC (Organization of Tropical East Pacific Convection) and PREDICT (PreDepression Investigation of Cloud‐Systems in the Tropics) projects to characterize the mesoscale properties of tropical oceanic convection in terms of selected thermodynamic parameters computable from the explicit grids of large‐scale models. In particular, saturation fraction, lower tropospheric moist convective instability, and convective inhibition appear to govern column‐integrated moisture convergence, while sea surface temperature is related to the top‐heaviness of mass flux profiles and the integrated entropy divergence. Local (as opposed to global) surface heat and moisture fluxes and convective available potential energy correlate weakly with these quantities. Recommendations to improve cumulus parameterizations are enumerated. 
    more » « less