skip to main content


Title: A Single‐Mode, Self‐Adapting, and Self‐Powered Mechanoreceptor Based on a Potentiometric–Triboelectric Hybridized Sensing Mechanism for Resolving Complex Stimuli
Abstract

Human skin is equipped with slow adapting (SA) and fast adapting (FA) capabilities simultaneously. To mimic such functionalities, elaborately designed devices have been explored by integrating multiple sensing elements or adopting multimode sensing principles. However, the complicated fabrication, signal mismatch of different modules, complex operation, and high power‐consumption hinder their widespread applications. Here, a new type of single‐mode and self‐powered mechanoreceptor that can mimic both SA and FA via seamless fusion of complementary while compatible potentiometric and triboelectric sensing principles is reported. The resultant potentiometric–triboelectric hybridized mechanoreceptor exhibits distinctive features that are hard to achieve via currently existing methods, including single‐mode output (only voltage signal), greatly simplified operation (single‐measurement setup), ultralow power‐consumption (<1 nW), self‐adaptive response behavior, and good capability for resolving complex stimuli. Diverse mechanical characteristics, including magnitude, duration, frequency, applying and releasing speed, can be well interpreted with this single‐mode and self‐powered mechanoreceptor. Its promising application for monitoring object manipulations with a soft robotic gripper is explored. Furthermore, the versatility of the mechanoreceptor for resolving complex stimuli in diverse daily scenarios is demonstrated. This work presents a new design that will significantly simplify the fabrication/operation and meanwhile boost the functionality/energy‐efficiency of future electronic devices and smart systems.

 
more » « less
PAR ID:
10455760
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
50
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Incorporating neuromorphic electronics in bioelectronic interfaces can provide intelligent responsiveness to environments. However, the signal mismatch between the environmental stimuli and driving amplitude in neuromorphic devices has limited the functional versatility and energy sustainability. Here we demonstrate multifunctional, self-sustained neuromorphic interfaces by achieving signal matching at the biological level. The advances rely on the unique properties of microbially produced protein nanowires, which enable both bio-amplitude (e.g., <100 mV) signal processing and energy harvesting from ambient humidity. Integrating protein nanowire-based sensors, energy devices and memristors of bio-amplitude functions yields flexible, self-powered neuromorphic interfaces that can intelligently interpret biologically relevant stimuli for smart responses. These features, coupled with the fact that protein nanowires are a green biomaterial of potential diverse functionalities, take the interfaces a step closer to biological integration. 
    more » « less
  2. Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices. 
    more » « less
  3. Abstract

    The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self‐powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends’ triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA‐gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self‐powered health diagnostics and therapeutics.

     
    more » « less
  4. Abstract

    Synthetic materials that mimic the ability of natural occurring features to self‐actuate in response to different stimuli have wide applications in soft robotics, microdevices, drug delivery, regenerative medicine, and sensing. Here, unexpected and counter‐intuitive findings are presented in which a strongly polyelectrolytic hydrogel repels from strong polar solvents upon partial exposure (e.g., partial hydration by water). This repulsion drives the actuation and self‐folding of the gel, which results in rapid formation of different three‐dimensional shapes by simply placing the corresponding two‐dimensional films on water. A detailed investigation into the role of hydrogel chemistry, pH, and morphology on hydration‐triggered actuation behavior of the gels and their nanocomposites is described. Finally, a computational model is developed in order to further elucidate mechanisms of actuation. Modeling partial hydration as a repulsive driving force, it tracks the evolution of the shape of the thin film that results from restoring elastic forces. Taken together, the results indicate that an interplay between elastic and Coulombic repulsive forces leads to seemingly unexpected behavior of actuation of strongly polyelectrolytic gels away from polar solvents, leading to a novel and simple fabrication strategy for diverse 3D devices.

     
    more » « less
  5. Abstract

    Innovative human–machine interfaces (HMIs) have attracted increasing attention in the field of system control and assistive devices for disabled people. Conventional HMIs that are designed based on the interaction of physical movements or language communication are not effective or appliable to severely disabled users. Here, a breath‐driven triboelectric sensor is reported consisting of a soft fixator and two circular‐shaped triboelectric nanogenerators (TENGs) for self‐powered respiratory monitoring and smart system control. The sensor device is capable of effectively detecting the breath variation and generates responsive electrical signals based on different breath patterns without affecting the normal respiration. A breathing‐driven HMI system is demonstrated for severely disabled people to control electrical household appliances and shows an intelligent respiration monitoring system for emergence alarm. The new system provides the advantages of high sensitivity, good stability, low cost, and ease of use. This work will not only expand the development of the TENGs in self‐powered sensors, but also opens a new avenue to develop assistive devices for disabled people through innovation of advanced HMIs.

     
    more » « less