skip to main content


Title: A Conceptual Model of a River Plume in the Surf Zone
Abstract

We use observations from the Quinault River, a small river that flows into an energetic surf zone on the West Coast of Washington state, to investigate the interaction between river and wave forcing. By synthesizing data from moorings, drifters, and Unmanned Aerial System video, we develop a conceptual model of this interaction based on three length scales: the surf zone width,LSZ; the near‐field plume length,LNF; and the cross‐shore extent of the channel,LC. The relationships between these length scales show how tidal variability and bathymetric effects change the balance of wave and river momentum. The most frequently observed state isLSZ>LNF. Under these conditions the surf zone traps the outflowing river plume and the river water's initial propagation into the surf zone is set byLNF. When the river velocity is highest during low water, and when wave forcing is low,LNF>LSZand river water escapes the surf zone. At high water during low wave forcing,LC>LSZ, such that minimal wave breaking occurs in the channel and river water escapes onto the shelf. Based on the discharge, wave, and tidal conditions, the conceptual model is used to predict the fate of river water from the Quinault over a year, showing that approximately 70% of the river discharge is trapped in the surf zone upon exiting the river mouth.

 
more » « less
NSF-PAR ID:
10455816
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
124
Issue:
11
ISSN:
2169-9275
Page Range / eLocation ID:
p. 8060-8078
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We use salinity observations from drifters and moorings at the Quinault River mouth to investigate mixing and stratification in a surf-zone-trapped river plume. We quantify mixing based on the rate of change of salinity DS/Dt in the drifters’ quasi-Lagrangian reference frame. We estimate a constant value of the vertical eddy diffusivity of salt of Kz=(2.2 +/- 0.6) x 10^-3 m^2 s^-1, based on the relationship between vertically integrated DS/Dt and stratification, with values as high as 1 x 10^-2 m^2 s^-1 when stratification is low. Mixing, quantified as DS/Dt, is directly correlated to surf-zone stratification, and is therefore modulated by changes in stratification caused by tidal variability in freshwater volume flux. High DS/Dt is observed when the near-surface stratification is high and salinity gradients are collocated with wave-breaking turbulence. We observe a transition from low stratification and low DS/Dt at low tidal stage to high stratification and high DS/Dt at high tidal stage. Observed wave-breaking turbulence does not change significantly with stratification, tidal stage, or offshore wave height; as a result, we observe no relationship between plume mixing and offshore wave height for the range of conditions sampled. Thus, plume mixing in the surf zone is altered by changes in stratification; these are due to tidal variability in freshwater flux from the river and not wave conditions, presumably because depth-limited wave breaking causes sufficient turbulence for mixing to occur during all observed conditions. 
    more » « less
  2. Abstract

    In contrast to large river plumes, Coriolis effects are weak, and inertia is quickly depleted so that the fate and structure of small‐scale plumes are more sensitive to tide and wind. Advected alongshore by reversing tidal currents in absence of wind forcing, small buoyant plumes are persistently deflected downwind in presence of alongshore winds and exhibit little tidal variability. The effect of different upwelling/downwelling winds on buoyant outflows ∼10 m3 s−1is explored. With increasing wind, tidal variability decreases, as does asymmetry in plume characteristics—for strong winds upwelling/downwelling plume structure is similar as the plume is retained closer to the shore. Wind forcing is exerted directly by wind stress on the surface of the plume and indirectly by wind‐driven currents that deflect the upwind boundary of the plume. While inertia and buoyancy dominate the inner plume, and wind dominates the outer plume, the mid‐plume responds to an interaction of wind and buoyancy forcing that can be indexed by a Plume Wedderburn NumberWpl(wind stress vs. density gradients): for weaker winds (Wpl< 1) surface stress enhances stratification through straining, lengthening the reach of low‐salinity waters, whereas for stronger winds (Wpl> 1) surface stress mixes the plume vertically, shortening the reach of low‐salinity waters. However, dilute plume waters extend furthest in strong winds, passively advected several kilometers downwind. Shoreline exposure to outflow transitions from a quasi‐symmetrical tide‐averaged zone of impact under zero‐wind to a heavily skewed zone with persistent weak wind and a one‐sided zone for strong wind.

     
    more » « less
  3. Abstract

    Bubble plume penetration depths have been identified as a key parameter linking subsurface turbulent kinetic energy (TKE) dissipation rates and whitecaps. From data collected in the Atlantic sector of the Southern Ocean, nominally 50°S 40°W, bubble plume penetration depths were estimated from Acoustic Doppler Current Profiler measurements of the acoustic backscatter anomaly. Bubble presence at depth was corroborated using independent measurements of optical scattering. Here, an effective wavelength, observations of significant wave height and atmospheric forcing were used to scale penetration depths of breaking waves under open ocean conditions. The parameterization was developed assuming a correlation between the observed penetration depth and an estimate of the TKE dissipation rate enhancement under breaking waves. The effective wavelength was defined from the effective phase speed based on a momentum and energy balance across the atmospheric wave boundary layer and was considered to be the largest actively wind‐coupled wave and representative of large‐scale breaking for wave ages ranging from 15 to 35 (i.e., 15 ≤ 〈cp/u*〉 ≤ 35). This yields a dimensional penetration depth parameterization in terms of inverse wave age and the length scales under consideration. The parameterization captures the bubble plume penetration depth with stronger forcing leading to deeper injections, reaching up to 9 m. Both length scales are effective at defining the depth of a wave‐affected layer in terms of bubble presence with the effective wavelength better collapsing the data under mixed conditions with deeper plumes associated to larger fractional whitecap coverage.

     
    more » « less
  4. Abstract

    The Connecticut River plume is influenced by energetic ambient tides in the Long Island Sound receiving waters. The objectives of this modeling study are (a) characterizing the spatial heterogeneity of turbulent buoyancy fluxes, (b) partitioning turbulent buoyancy fluxes into bottom‐generated and interfacial shear contributions, and (c) quantifying contributions to plume‐integrated mixing within the tidal plume. The plume formed during ambient flood tides under low river discharge, spring tides, and no winds is analyzed. Turbulent buoyancy fluxes (B) and depth‐integratedBthrough the plume (Bd) are characterized by pronounced spatial heterogeneity. Strong mixing (Bd∼ 10−5‐10−4 m3/s3) occurs near the mouth, in the nearfield plume turning region, over shoals, and nearshore shallow areas. Low to moderate mixing (Bd∼ 10−8‐10−6 m3/s3) occupies half the plume. Buoyancy fluxes are first partitioned based on the depth of the shear stress minimum between plume‐generated and bottom‐generated shear maxima. Four other tested partitioning methods are based on open channel flow and stratified shear flow parameterizations. Interfacial and bottom‐generated shear contribute to different areas of intense and moderate mixing. All methods indicate a significant plume mixing role for bottom‐generated mixing, but interfacial mixing is a bigger contributor. Plume‐integrated total and interfacial mixing peak at max ambient flood and the timing of peak bottom‐generated mixing varies among partitioning methods. Two‐thirds of the mixing occurs in concentrated intense mixing areas. A parameter space with the ambient tidal Froude number and plume thickness to depth ratio as axes indicates many tidally modulated plumes are moderately to dominantly influenced by bottom‐generated tidal mixing.

     
    more » « less
  5. Abstract

    This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time‐lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6‐km long longitudinal ER surveys during summer and winter. The time‐lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel‐scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.

     
    more » « less