skip to main content

Title: Identification of a hormogonium polysaccharide‐specific gene set conserved in filamentous cyanobacteria

Cyanobacteria comprise a phylum defined by the capacity for oxygenic photosynthesis. Members of this phylum are frequently motile as well. Strains that display gliding or twitching motility across semisolid surfaces are powered by a conserved type IV pilus system (T4P). Among the filamentous, heterocyst‐forming cyanobacteria, motility is usually confined to specialized filaments known as hormogonia, and requires the deposition of an associated hormogonium polysaccharide (HPS). The genes involved in assembly and export of HPS are largely undefined, and it has been hypothesized that HPS exits the outer membrane via an atypical T4P‐driven mechanism. Here, several novelhpsloci, primarily encoding glycosyl transferases, are identified. Mutational analysis demonstrates that the majority of these genes are essential for both motility and production of HPS. Notably, most mutant strains accumulate wild‐type cellular levels of the major pilin PilA, but not extracellular PilA, indicating dysregulation of the T4P motors, and, therefore, a regulatory interaction between HPS assembly and T4P activity. A co‐occurrence analysis of Hps orthologs among cyanobacteria identified an extended set of putative Hps proteins comprising most components of a Wzx/Wzy‐type polysaccharide synthesis and export system. This implies that HPS may be secreted through a more canonical pathway, rather than a T4P‐mediated mechanism.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Microbiology
Page Range / eLocation ID:
p. 597-608
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sogaard-Andersen, Lotte (Ed.)
    ABSTRACT Surface motility powered by type IV pili (T4P) is widespread among bacteria, including the photosynthetic cyanobacteria. This form of movement typically requires the deposition of a motility-associated polysaccharide, and several studies indicate that there is complex coregulation of T4P motor activity and polysaccharide production, although a mechanistic understanding of this coregulation is not fully defined. Here, using a combination of genetic, comparative genomic, transcriptomic, protein-protein interaction, and cytological approaches in the model filamentous cyanobacterium N. punctiforme , we provided evidence that a DnaK-type chaperone system coupled the activity of the T4P motors to the production of the motility-associated hormogonium polysaccharide (HPS). The results from these studies indicated that DnaK1 and DnaJ3 along with GrpE comprised a chaperone system that interacted specifically with active T4P motors and was required to produce HPS. Genomic conservation in cyanobacteria and the conservation of the protein-protein interaction network in the model unicellular cyanobacterium Synechocystis sp. strain PCC 6803 imply that this system is conserved among nearly all motile cyanobacteria and provides a mechanism to coordinate polysaccharide secretion and T4P activity in these organisms. IMPORTANCE Many bacteria, including photosynthetic cyanobacteria, exhibit type IV pili (T4P) driven surface motility. In cyanobacteria, this form of motility facilitates dispersal, phototaxis, the formation of supracellular structures, and the establishment of nitrogen-fixing symbioses with eukaryotes. T4P-powered motility typically requires the deposition of motility-associated polysaccharides, and previous studies indicate that T4P activity and polysaccharide production are intimately linked. However, the mechanism by which these processes are coupled is not well defined. Here, we identified and characterized a DnaK(Hsp70)-type chaperone system that coordinates these two processes in cyanobacteria. 
    more » « less
  2. Motility is ubiquitous in prokaryotic organisms including the photosynthetic cyanobacteria where surface motility powered by type 4 pili (T4P) is common and facilitates phototaxis to seek out favorable light environments. In cyanobacteria, chemotaxis-like systems are known to regulate motility and phototaxis. The characterized phototaxis systems rely on methyl-accepting chemotaxis proteins containing bilin-binding GAF domains capable of directly sensing light, and the mechanism by which they regulate the T4P is largely undefined. In this study we demonstrate that cyanobacteria possess a second, GAF-independent, means of sensing light to regulate motility and provide insight into how a chemotaxis-like system regulates the T4P motors. A combination of genetic, cytological, and protein–protein interaction analyses, along with experiments using the proton ionophore carbonyl cyanide m-chlorophenyl hydrazine, indicate that the Hmp chemotaxis-like system of the model filamentous cyanobacteriumNostoc punctiformeis capable of sensing light indirectly, possibly via alterations in proton motive force, and modulates direct interaction between the cyanobacterial taxis protein HmpF, and Hfq, PilT1, and PilT2 to regulate the T4P motors. Given that the Hmp system is widely conserved in cyanobacteria, and the finding from this study that orthologs of HmpF and T4P proteins from the distantly related model unicellular cyanobacteriumSynechocystissp. strain PCC6803 interact in a similar manner to theirN. punctiformecounterparts, it is likely that this represents a ubiquitous means of regulating motility in response to light in cyanobacteria.

    more » « less
  3. Maupin-Furlow, Julie A (Ed.)
    ABSTRACT <p>Many prokaryotes use swimming motility to move toward favorable conditions and escape adverse surroundings. Regulatory mechanisms governing bacterial flagella-driven motility are well-established; however, little is yet known about the regulation underlying swimming motility propelled by the archaeal cell surface structure, the archaella. Previous research showed that the deletion of the adhesion pilins (PilA1-6), subunits of the type IV pili cell surface structure, renders the model archaeon<italic>Haloferax volcanii</italic>non-motile. In this study, we used ethyl methanesulfonate mutagenesis and a motility assay to identify motile suppressors of the ∆<italic>pilA</italic>[<italic>1-6</italic>] strain. Of the eight suppressors identified, six contain missense mutations in archaella biosynthesis genes,<italic>arlI</italic>and<italic>arlJ. In trans</italic>expression of<italic>arlI</italic>and<italic>arlJ</italic>mutant constructs in the respective multi-deletion strains ∆<italic>pilA</italic>[<italic>1-6</italic>]∆<italic>arlI</italic>and ∆<italic>pilA</italic>[<italic>1-6</italic>]∆<italic>arlJ</italic>confirmed their role in suppressing the ∆<italic>pilA</italic>[<italic>1-6</italic>] motility defect. Additionally, three suppressors harbor co-occurring disruptive missense and nonsense mutations in<italic>cirA</italic>, a gene encoding a proposed regulatory protein. A deletion of<italic>cirA</italic>resulted in hypermotility, while<italic>cirA</italic>expression<italic>in trans</italic>in wild-type cells led to decreased motility. Moreover, quantitative real-time PCR analysis revealed that in wild-type cells, higher expression levels of<italic>arlI</italic>,<italic>arlJ</italic>, and the archaellin gene<italic>arlA1</italic>were observed in motile early-log phase rod-shaped cells compared to non-motile mid-log phase disk-shaped cells. Conversely, ∆<italic>cirA</italic>cells, which form rods during both early- and mid-log phases, exhibited similar expression levels of<italic>arl</italic>genes in both growth phases. Our findings contribute to a deeper understanding of the mechanisms governing archaeal motility, highlighting the involvement of ArlI, ArlJ, and CirA in pilin-mediated motility regulation.</p><sec><title>IMPORTANCE

    Archaea are close relatives of eukaryotes and play crucial ecological roles. Certain behaviors, such as swimming motility, are thought to be important for archaeal environmental adaptation. Archaella, the archaeal motility appendages, are evolutionarily distinct from bacterial flagella, and the regulatory mechanisms driving archaeal motility are largely unknown. Previous research has linked the loss of type IV pili subunits to archaeal motility suppression. This study reveals threeHaloferax volcaniiproteins involved in pilin-mediated motility regulation, offering a deeper understanding of motility regulation in this understudied domain while also paving the way for uncovering novel mechanisms that govern archaeal motility. Understanding archaeal cellular processes will help elucidate the ecological roles of archaea as well as the evolution of these processes across domains.

    more » « less
  4. LaRock, Christopher N. (Ed.)
    ABSTRACT Streptococcus sanguinis is a common cause of infective endocarditis (IE). Efforts by research groups are aimed at identifying and characterizing virulence factors that contribute to the ability of this organism to cause IE. This Gram-positive pathogen causes heart infection by gaining access to the bloodstream, adhering to host extracellular matrix protein and/or platelets, colonizing the aortic endothelium, and incorporating itself into the aortic vegetation. While many virulence factors have been reported to contribute to the ability of S. sanguinis to cause IE, it is noteworthy that type IV pili (T4P) have not been described to be a virulence factor in this organism, although S. sanguinis strains typically encode these pili. Type IV pili are molecular machines that are capable of mediating diverse virulence functions and surface motility. T4P have been shown to mediate twitching motility in some strains of S. sanguinis , although in most strains it has been difficult to detect twitching motility. While we found that T4P are dispensable for direct in vitro platelet binding and aggregation phenotypes, we show that they are critical to the development of platelet-dependent biofilms representative of the cardiac vegetation. We also observed that T4P are required for in vitro invasion of S. sanguinis into human aortic endothelial cells, which indicates that S. sanguinis may use T4P to take advantage of an intracellular niche during infection. Importantly, we show that T4P of S. sanguinis are critical to disease progression (vegetation development) in a native valve IE rabbit model. The results presented here expand our understanding of IE caused by S. sanguinis and identify T4P as an important virulence factor for this pathogen. IMPORTANCE This work provides evidence that type IV pili produced by Streptococcus sanguinis SK36 are critical to the ability of these bacteria to attach to and colonize the aortic heart valve (endocarditis). We found that an S. sanguinis type IV pili mutant strain was defective in causing platelet-dependent aggregation in a 24-h infection assay but not in a 1-h platelet aggregation assay, suggesting that the type IV pili act at later stages of vegetation development. In a rabbit model of disease, a T4P mutant strain does not develop mature vegetations that form on the heart, indicating that this virulence factor is critical to disease and could be a target for IE therapy. 
    more » « less
  5. Paolo Visca (Ed.)
    With the pressing antibiotic resistance pandemic, antivirulence has been increasingly explored as an alternative strategy against bacterial infections. The bacterial type IV pilus (T4P) is a well-documented virulence factor and an attractive target for small molecules for antivirulence purposes. The PilB ATPase is essential for T4P biogenesis because it catalyzes the assembly of monomeric pilins into the polymeric pilus filament. Here, we describe the identification of two PilB inhibitors by a high-throughput screen (HTS) in vitro and their validation as effective inhibitors of T4P assembly in vivo. We used Chloracidobacterium thermophilum PilB as a model enzyme to optimize an ATPase assay for the HTS. From a library of 2,320 compounds, benserazide and levodopa, two approved drugs for Parkinson’s disease, were identified and confirmed biochemically to be PilB inhibitors. We demonstrate that both compounds inhibited the T4P-dependent motility of the bacteria Myxoccocus xanthus and Acinetobacter nosocomialis. Additionally, benserazide and levodopa were shown to inhibit A. nosocomialis biofilm formation, a T4P-dependent process. Using M. xanthus as a model, we showed that both compounds inhibited T4P assembly in a dose-dependent manner. These results suggest that these two compounds are effective against the PilB protein in vivo. The potency of benserazide and levodopa as PilB inhibitors both in vitro and in vivo demonstrate potentials of the HTS and its two hits here for the development of anti-T4P chemotherapeutics. 
    more » « less