skip to main content


Title: Teaching during a pandemic: Using high‐impact writing assignments to balance rigor, engagement, flexibility, and workload
Abstract

The COVID‐19 pandemic has created new challenges for instructors who seek high‐impact educational practices that can be facilitated online without creating excessive burdens with technology, grading, or enforcement of honor codes. These practices must also account for the possibility that some students may need to join courses asynchronously and have limited or unreliable connectivity. Of the American Association of Colleges and University's list of 11 high‐impact educational practices, writing‐intensive courses may be the easiest for science faculty to adopt during these difficult times. Not only can writing assignments promote conceptual learning, they can also deepen student engagement with the subject matter and with each other. Furthermore, writing assignments can be incredibly flexible in terms of how they are implemented online and can be designed to reduce the possibility of cheating and plagiarism. To accelerate the adoption of writing pedagogies, we summarize evidence‐based characteristics of effective writing assignments and offer a sample writing assignment from an introductory ecology course. We then suggest five strategies to help instructors manage their workload. Although the details of the sample assignment may be particular to our course, this framework is general enough to be adapted to most science courses, including those taught in‐person, those taught online, and those that must be able to switch quickly between the two.

 
more » « less
NSF-PAR ID:
10455894
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
22
ISSN:
2045-7758
Page Range / eLocation ID:
p. 12573-12580
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Asynchronous online courses are popular because they offer benefits to both students and instructors. Students benefit from the convenience, flexibility, affordability, freedom of geography, and access to information. Instructors and institutions benefit by having a broad geographical reach, scalability, and cost-savings of no physical classroom. A challenge with asynchronous online courses is providing students with engaging, collaborative and interactive experiences. Here, we describe how an online poster symposium can be used as a unique educational experience and assessment tool in a large-enrollment (e.g., 500 students), asynchronous, natural science, general education (GE) course. The course, Introduction to Environmental Science (ENR2100), was delivered using distance education (DE) technology over a 15-week semester. In ENR2100 students learn a variety of topics including freshwater resources, surface water, aquifers, groundwater hydrology, ecohydrology, coastal and ocean circulation, drinking water, water purification, wastewater treatment, irrigation, urban and agricultural runoff, sediment and contaminant transport, water cycle, water policy, water pollution, and water quality. Here we present a is a long-term study that takes place from 2017 to 2022 (before and after COVID-19) and involved 5,625 students over 8 semesters. Scaffolding was used to break up the poster project into smaller, more manageable assignments, which students completed throughout the semester. Instructions, examples, how-to videos, book chapters and rubrics were used to accommodate Students’ different levels of knowledge. Poster assignments were designed to teach students how to find and critically evaluate sources of information, recognize the changing nature of scientific knowledge, methods, models and tools, understand the application of scientific data and technological developments, and evaluate the social and ethical implications of natural science discoveries. At the end of the semester students participated in an asynchronous online poster symposium. Each student delivered a 5-min poster presentation using an online learning management system and completed peer reviews of their classmates’ posters using a rubric. This poster project met the learning objectives of our natural science, general education course and taught students important written, visual and verbal communication skills. Students were surveyed to determine, which parts of the course were most effective for instruction and learning. Students ranked poster assignments first, followed closely by lectures videos. Approximately 87% of students were confident that they could produce a scientific poster in the future and 80% of students recommended virtual poster symposiums for online courses. 
    more » « less
  2. null (Ed.)
    Purpose: We gathered examples from our extended collaboration to move educators move online while avoiding synchronous meetings. “gPortfolios” are public (to the class) pages where students write responses to carefully constructed engagement routines. Students then discuss their work with instructors and peers in threaded comments. gPortfolios usually include engagement reflections, formative self-assessments, and automated quizzes. These assessments support and document learning while avoiding instructor “burnout” from grading. gPortfolios can be implemented using Google Docs and Forms or any learning management system. Methodology. We report practical insights gained from design-based implementation research. This research explored the late Randi Engle’s principles for productive disciplinary engagement and expansive framing. Engle used current theories of learning to foster student discussions that were both authentic to the academic discipline at hand and productive for learning. This research also used new approaches to assessment to support Engle’s principles. This resulted in a comprehensive approach to online instruction and assessment that is effective and efficient for both students and teachers. Findings. Our approach “frames” (i.e., contextualizes) online engagement using each learners’ own experiences, perspectives, and goals. Writing this revealed how this was different in different courses. Secondary biology students framed each assignment independently. Secondary English and history students framed assignments as elements of a personalized capstone presentation; the history students further used a self-selected “historical theme.” Graduate students framed each assignment in an educational assessment course using a real or imagined curricular aim and context. Originality. Engle’s ideas have yet to be widely taken up in online education. 
    more » « less
  3. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  4. Civil engineering education must be updated to keep pace with the profession and move past a culture of disengagement where technical work is considered separate from societal impact. Civil engineering students need to engage with diversity, equity, inclusion and justice (DEIJ) so they can understand the differential impacts of engineering on individuals from different groups within society. We aim to encourage the transformation of civil engineering education to produce engineers that will be prepared to meaningfully engage with society and advance justice in their future professional roles by providing examples of pedagogical change and analyzing student responses. In this study we implemented new course assignments in an introductory civil engineering course and a civil engineering materials course. In the introductory assignment students were taught to draw systems models and asked to consider social and technical factors contributing to the Hurricane Katrina disaster. In the materials course students completed pre-class readings about a regional highway reconstruction project, including articles about neighborhood opposition to the project, and participated in an in-class discussion. We analyzed student submissions using qualitative content analysis. Students in both courses (33% introductory, 60% materials) described learning about the impact engineering designs had on the community. In the materials class students were asked specifically about the impact of race and wealth on infrastructure decision-making. Student responses showed a wide range in how students understood the history of the situation and dynamics of power and privilege. Errors and limitations in student responses point to specific ways the instructors can improve student learning. Our results demonstrate that the integration of activities about societal impact is possible in technical engineering courses, emphasize the importance of integrating social context and related DEIJ content into technical courses, and provide insights into what students perceived they learned from the activities. 
    more » « less
  5. Cybersecurity continues to be a critical aspect within every computing division, especially in the realm of operating system (OS) development. The OS resides at the lower layer above the hardware in the computing hierarchy. If the layers above the OS are well hardened, a security flaw in the OS will compromise the resources in those higher layers. Although several learning resources and courses are available for OS security, they are taught in advanced UG or graduate-level computer security classes. In this work, we develop cybersecurity educational modules that instructors can adoptin their OS courses to emphasize security in OS while teaching its concepts. The goal of this work is to engage students in learning security aspects in OS, while learning its concepts. It will give students a good understanding of different security concepts and how they are implemented in the OS. Towards this, we develop security educational modules for an OS course that will be available to the instructors for adoption in their courses. These modules are designed to be used in a UG-level OS course. To work on these modules, students should be familiar with C programming and OS concepts taught in the class. The modules are intended to be completed within the course of a semester. To achieve this goal, we organize them into three mini-projects witheach can be completed within a few weeks. We chose xv6 as the platform due to its popularity as an educational OS for developing the modules. To develop the modules, we referred to the recent version of a popular OS textbook for the security concepts. The topics discussed in it include authentication, authorization, cryptography, and distributed system security. We kept our educational modules mostly aligned with these topics except distributed system security. We also included a module for implementing a defense mechanism against buffer-overflow attacks, a famous software vulnerability. We created three mini-projects for these modules, each accompanied by proper documentation and a GitHub repository. Two versions are created for each project, one for a student’s assignment available in the repository and another as a solution version for instructors. The first project implements a user authentication system in xv6. Students will implement various specifications such as password structure with encryption and programs such as useradd, passwd, whoami, and login. The implementation guidelines are provided in the documentation, along with skeleton code. The authorization project implements the Unix-style access control system. In this project, students will modify and create various structures and functions within the xv6 kernel. The last project is to build a defense mechanism against buffer-overflow using Address Space Layout Randomization (ASLR). Students are expected to implement a random number generator and modify the executable file loader in xv6. The submission for each project is expected to demonstrate the module behavior comparable to relevant systems present in production grade OS, such as Linux. 
    more » « less