skip to main content

Title: Compounding effects of white pine blister rust, mountain pine beetle, and fire threaten four white pine species

Invasive pathogens and bark beetles have caused precipitous declines of various tree species around the globe. Here, we characterized long‐term patterns of mountain pine beetle (Dendroctonus ponderosae; MPB) attacks and white pine blister rust, an infectious tree disease caused by the pathogen,Cronartium ribicola. We focused on four dominant white pine host species in Sequoia and Kings Canyon National Parks (SEKI), including sugar pine (Pinus lambertiana), western white pine (P. monticola), whitebark pine (P. albicaulis), and foxtail pine (P. balfouriana). Between 2013 and 2017, we resurveyed 152 long‐term monitoring plots that were first surveyed and established between 1995 and 1999. Overall extent (plots with at least one infected tree) of white pine blister rust (blister rust) increased from 20% to 33%. However, the infection rate across all species decreased from 5.3% to 4.2%. Blister rust dynamics varied greatly by species, as infection rate decreased from 19.1% to 6.4% in sugar pine, but increased in western white pine from 3.0% to 8.7%. For the first time, blister rust was recorded in whitebark pine, but not foxtail pine plots. MPB attacks were highest in sugar pines and decreased in the higher elevation white pine species, whitebark and foxtail pine. Both blister rust and MPB were important factors associated with elevated mortality in sugar pines. We did not, however, find a relationship between previous fires and blister rust occurrence. In addition, multiple mortality agents, including blister rust, fire, and MPB, contributed to major declines in sugar pine and western white pine; recruitment rates were much lower than mortality rates for both species. Our results highlighted that sugar pine has been declining much faster in SEKI than previously documented. If blister rust and MPB trends persist, western white pine may follow similar patterns of decline in the future. Given current spread patterns, blister rust will likely continue to increase in higher elevations, threatening subalpine white pines in the southern Sierra Nevada. More frequent long‐term monitoring efforts could inform ongoing restoration and policy focused on threats to these highly valuable and diverse white pines.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.

    more » « less
  2. Abstract. Mountain pine beetle (MPB) outbreaks in the western United States result inwidespread tree mortality, transforming forest structure within watersheds.While there is evidence that these changes can alter the timing and quantity of streamflow, there is substantial variation in both the magnitude and direction of hydrologic responses, and the climatic and environmental mechanisms driving this variation are not well understood. Herein, we coupled an eco-hydrologic model (RHESSys) with a beetle effects model and applied it to a semiarid watershed, Trail Creek, in the Bigwood River basin in central Idaho, USA, to examine how varying degrees of beetle-caused tree mortality influence water yield. Simulation results show that water yield during the first 15 years after beetle outbreak is controlled by interactions between interannual climate variability, the extent of vegetation mortality, and long-term aridity. During wet years, water yield after a beetle outbreak increased with greater tree mortality; this was driven by mortality-caused decreases in evapotranspiration. During dry years, water yield decreased at low-to-medium mortality but increased at high mortality. The mortality threshold for the direction of change was location specific. The change in water yield also varied spatially along aridity gradients during dry years. In wetter areas of the Trail Creek basin, post-outbreak water yield decreased at low mortality (driven by an increase in ground evaporation) and increased when vegetation mortality was greater than 40 % (driven by a decrease in canopy evaporation and transpiration). In contrast, in more water-limited areas, water yield typically decreased after beetle outbreaks, regardless of mortality level (although the driving mechanisms varied). Our findings highlight the complexity and variability of hydrologic responses and suggest that long-term (i.e., multi-decadal mean) aridity can be a useful indicator for the direction of water yield changes after a disturbance. 
    more » « less
  3. Abstract

    Range shifts of infectious plant disease are expected under climate change. As plant diseases move, emergent abiotic-biotic interactions are predicted to modify their distributions, leading to unexpected changes in disease risk. Evidence of these complex range shifts due to climate change, however, remains largely speculative. Here, we combine a long-term study of the infectious tree disease, white pine blister rust, with a six-year field assessment of drought-disease interactions in the southern Sierra Nevada. We find that climate change between 1996 and 2016 moved the climate optimum of the disease into higher elevations. The nonlinear climate change-disease relationship contributed to an estimated 5.5 (4.4–6.6) percentage points (p.p.) decline in disease prevalence in arid regions and an estimated 6.8 (5.8–7.9) p.p. increase in colder regions. Though climate change likely expanded the suitable area for blister rust by 777.9 (1.0–1392.9) km2into previously inhospitable regions, the combination of host-pathogen and drought-disease interactions contributed to a substantial decrease (32.79%) in mean disease prevalence between surveys. Specifically, declining alternate host abundance suppressed infection probabilities at high elevations, even as climatic conditions became more suitable. Further, drought-disease interactions varied in strength and direction across an aridity gradient—likely decreasing infection risk at low elevations while simultaneously increasing infection risk at high elevations. These results highlight the critical role of aridity in modifying host-pathogen-drought interactions. Variation in aridity across topographic gradients can strongly mediate plant disease range shifts in response to climate change.

    more » « less
  4. null (Ed.)
    Finding trees that are resistant to pathogens is key in preparing for current and future disease threats such as the invasive white pine blister rust. In this study, we analyzed the potential of using hyperspectral imaging to find and diagnose the degree of infection of the non-native white pine blister rust in southwestern white pine seedlings from different seed-source families. A support vector machine was able to automatically detect infection with a classification accuracy of 87% (κ = 0.75) over 16 image collection dates. Hyperspectral imaging only missed 4% of infected seedlings that were impacted in terms of vigor according to expert’s assessments. Classification accuracy per family was highly correlated with mortality rate within a family. Moreover, classifying seedlings into a ‘growth vigor’ grouping used to identify the degree of impact of the disease was possible with 79.7% (κ = 0.69) accuracy. We ranked hyperspectral features for their importance in both classification tasks using the following features: 84 vegetation indices, simple ratios, normalized difference indices, and first derivatives. The most informative features were identified using a ‘new search algorithm’ that combines both the p-value of a 2-sample t-test and the Bhattacharyya distance. We ranked the normalized photochemical reflectance index (PRIn) first for infection detection. This index also had the highest classification accuracy (83.6%). Indices such as PRIn use only a small subset of the reflectance bands. This could be used for future developments of less expensive and more data-parsimonious multispectral cameras. 
    more » « less
  5. Abstract

    Predicted increases in extreme droughts will likely cause major shifts in carbon sequestration and forest composition. Although growth declines during drought are widely documented, an increasing number of studies have reported both positive and negative responses to the same drought. These divergent growth patterns may reflect thresholds (i.e., nonlinear responses) promoted by changes in the dominant climatic constraints on tree growth. Here we tested whether stemwood growth exhibited linear or nonlinear responses to temperature and precipitation and whether stemwood growth thresholds co‐occurred with multiple thresholds in source and sink processes that limit tree growth. We extracted 772 tree cores, 1398 needle length records, and 1075 stable isotope samples from 27 sites across whitebark pine's (Pinus albicaulisEngelm.) climatic niche in the Sierra Nevada. Our results indicated that a temperature threshold in stemwood growth occurred at 8.4°C (7.12–9.51°C; estimated using fall‐spring maximum temperature). This threshold was significantly correlated with thresholds in foliar growth, as well as carbon (δ13C) and nitrogen (δ15N) stable isotope ratios, that emerged during drought. These co‐occurring thresholds reflected the transition between energy‐ and water‐limited tree growth (i.e., the E–W limitation threshold). This transition likely mediated carbon and nutrient cycling, as well as important differences in growth‐defense trade‐offs and drought adaptations. Furthermore, whitebark pine growing in energy‐limited regions may continue to experience elevated growth in response to climate change. The positive effect of warming, however, may be offset by growth declines in water‐limited regions, threatening the long‐term sustainability of the recently listed whitebark pine species in the Sierra Nevada.

    more » « less