Museum specimens provide a wealth of information to biologists, but obtaining genetic data from formalin‐fixed and fluid‐preserved specimens remains challenging. While
Natural history collections play a crucial role in biodiversity research, and museum specimens are increasingly being incorporated into modern genetics‐based studies. Sequence capture methods have proven incredibly useful for phylogenomics, providing the additional ability to sequence historical museum specimens with highly degraded DNA, which until recently have been deemed less valuable for genetic work. The successful sequencing of ultraconserved elements (UCEs) from historical museum specimens has been demonstrated on multiple tissue types including dried bird skins, formalin‐fixed squamates and pinned insects. However, no study has thoroughly demonstrated this approach for historical ethanol‐preserved museum specimens. Alongside sequencing of “fresh” specimens preserved in >95% ethanol and stored at −80°C, we used extraction techniques specifically designed for degraded DNA coupled with sequence capture protocols to sequence UCEs from historical museum specimens preserved in 70%–80% ethanol and stored at room temperature, the standard for such ethanol‐preserved museum collections. Across 35 fresh and 15 historical museum samples of the arachnid order Opiliones, an average of 345 UCE loci were included in phylogenomic matrices, with museum samples ranging from six to 495 loci. We successfully demonstrate the inclusion of historical ethanol‐preserved museum specimens in modern sequence capture phylogenomic studies, show a high frequency of variant bases at the species and population levels, and from off‐target reads successfully recover multiple loci traditionally sequenced in multilocus studies including mitochondrial loci and nuclear rRNA loci. The methods detailed in this study will allow researchers to potentially acquire genetic data from millions of ethanol‐preserved museum specimens held in collections worldwide.
more » « less- PAR ID:
- 10455934
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology Resources
- Volume:
- 19
- Issue:
- 6
- ISSN:
- 1755-098X
- Page Range / eLocation ID:
- p. 1531-1544
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract DNA sequences have been recovered from such specimens, most approaches are time‐consuming and produce low data quality and quantity. Here, we use a modifiedDNA extraction protocol combined with high‐throughput sequencing to recoverDNA from formalin‐fixed and fluid‐preserved snakes that were collected over a century ago and for which little or no modern genetic materials exist in public collections. We successfully extractedDNA and sequenced ultraconserved elements (= 2318 loci) from 10 fluid‐preserved snakes and included them in a phylogeny with modern samples. This phylogeny demonstrates the general use of such specimens in phylogenomic studies and provides evidence for the placement of enigmatic snakes, such as the rare and never‐before sequenced Indian Xylophis stenorhynchus . Our study emphasizes the relevance of museum collections in modern research and simultaneously provides a protocol that may prove useful for specimens that have been previously intractable forDNA sequencing. -
Over the past decade, museum genomics studies have focused on obtaining DNA of sufficient quality and quantity for sequencing from fluid-preserved natural history specimens, primarily to be used in systematic studies. While these studies have opened windows to evolutionary and biodiversity knowledge of many species worldwide, published works often focus on the success of these DNA sequencing efforts, which is undoubtedly less common than obtaining minimal or sometimes no DNA or unusable sequence data from specimens in natural history collections. Here, we attempt to obtain and sequence DNA extracts from 115 fresh and 41 degraded samples of homalopsid snakes, as well as from two degraded samples of a poorly known snake, Hydrablabes periops . Hydrablabes has been suggested to belong to at least two different families (Natricidae and Homalopsidae) and with no fresh tissues known to be available, intractable museum specimens currently provide the only opportunity to determine this snake’s taxonomic affinity. Although our aim was to generate a target-capture dataset for these samples, to be included in a broader phylogenetic study, results were less than ideal due to large amounts of missing data, especially using the same downstream methods as with standard, high-quality samples. However, rather than discount results entirely, we used mapping methods with references and pseudoreferences, along with phylogenetic analyses, to maximize any usable molecular data from our sequencing efforts, identify the taxonomic affinity of H. periops , and compare sequencing success between fresh and degraded tissue samples. This resulted in largely complete mitochondrial genomes for five specimens and hundreds to thousands of nuclear loci (ultra-conserved loci, anchored-hybrid enrichment loci, and a variety of loci frequently used in squamate phylogenetic studies) from fluid-preserved snakes, including a specimen of H. periops from the Field Museum of Natural History collection. We combined our H. periops data with previously published genomic and Sanger-sequenced datasets to confirm the familial designation of this taxon, reject previous taxonomic hypotheses, and make biogeographic inferences for Hydrablabes . A second H. periops specimen, despite being seemingly similar for initial raw sequencing results and after being put through the same protocols, resulted in little usable molecular data. We discuss the successes and failures of using different pipelines and methods to maximize the products from these data and provide expectations for others who are looking to use DNA sequencing efforts on specimens that likely have degraded DNA. Life Science Identifier ( Hydrablabes periops ) urn:lsid:zoobank.org :pub:F2AA44 E2-D2EF-4747-972A-652C34C2C09D.more » « less
-
Abstract The use of gDNAs isolated from museum specimens for high throughput sequencing, especially targeted sequencing in the context of phylogenetics, is a common practice. Yet, little understanding has been focused on comparing the quality of DNA and results of sequencing museum DNAs. Dragonflies and damselflies are ubiquitous in freshwater ecosystems and are commonly collected and preserved insects in museum collections hence their use in this study. However, the history of odonate preservation across time and museums has resulted in wide variability in the success of viable DNA extraction, necessitating an assessment of their usefulness in genetic studies. Using Anchored Hybrid Enrichment probes, we sequenced DNA from samples at 2 museums, 48 from the American Museum of Natural History (AMNH) in NYC, USA and 46 from the Naturalis Biodiversity Center (RMNH) in Leiden, Netherlands ranging from global collection localities and across a 120-year time span. We recovered at least 4 loci out of an >1,000 locus probe set for all samples, with the average capture being ~385 loci (539 loci on average when a clade of ambiguous taxa omitted). Neither specimen age nor size was a good predictor of locus capture, but recapture rates differed significantly between museums. Samples from the AMNH had lower overall locus capture than the RMNH, perhaps due to differences in specimen storage over time.
-
null (Ed.)The resolution of the Tree of Life has accelerated with advances in DNA sequencing technology. To achieve dense taxon sampling, it is often necessary to obtain DNA from historical museum specimens to supplement modern genetic samples. However, DNA from historical material is generally degraded, which presents various challenges. In this study, we evaluated how the coverage at variant sites and missing data among historical and modern samples impacts phylogenomic inference. We explored these patterns in the brush-tongued parrots (lories and lorikeets) of Australasia by sampling ultraconserved elements in 105 taxa. Trees estimated with low coverage characters had several clades where relationships appeared to be influenced by whether the sample came from historical or modern specimens, which were not observed when more stringent filtering was applied. To assess if the topologies were affected by missing data, we performed an outlier analysis of sites and loci, and a data reduction approach where we excluded sites based on data completeness. Depending on the outlier test, 0.15% of total sites or 38% of loci were driving the topological differences among trees, and at these sites, historical samples had 10.9× more missing data than modern ones. In contrast, 70% data completeness was necessary to avoid spurious relationships. Predictive modeling found that outlier analysis scores were correlated with parsimony informative sites in the clades whose topologies changed the most by filtering. After accounting for biased loci and understanding the stability of relationships, we inferred a more robust phylogenetic hypothesis for lories and lorikeets.more » « less
-
Abstract Connectivity among wildlife populations facilitates exchange of genetic material between groups. Changes to historical connectivity patterns resulting from anthropogenic activities can therefore have negative consequences for genetic diversity, particularly for small or isolated populations. DNA obtained from museum specimens can enable direct comparison of temporal changes in connectivity among populations, which can aid in conservation planning and contribute to the understanding of population declines. However, museum DNA can be degraded and only available in low quantities, rendering it challenging for use in population genomic analyses. Applications of genomic methodologies such as targeted sequencing address this issue by enabling capture of shared variable sites, increasing quantity and quality of recovered genomic information. We used targeted sequencing of ultra-conserved Elements (UCEs) to evaluate potential changes in connectivity and genetic diversity of roseate terns (Sterna dougallii) with a breeding distribution in the northwestern Atlantic and the Caribbean. Both populations experienced range contractions and population declines due to anthropogenic activity in the 20th century, which has the potential to alter historical connectivity regimes. Instead, we found that the two populations were differentiated historically as well as contemporaneously, with little evidence of migration between them for either time period. We also found no evidence for temporal changes in genetic diversity, although these interpretations may have been limited due to sequencing artifacts caused by the degraded nature of the museum samples. Population structuring in migratory seabirds is typically reflective of low rates of divergence and high connectivity among geographically segregated subpopulations. Our contrasting results suggest the potential presence of ecological mechanisms driving population differentiation, and highlight the value of targeted sequencing on DNA derived from museum specimens to uncover long-term patterns of genetic differentiation in wildlife populations.