skip to main content


Title: Improving field success of biocrust rehabilitation materials: hardening the organisms or softening the environment?

Drylands are a widely degraded biome characterized by low productivity and high abiotic stress. Biological soil crust (biocrust) inoculants hold promise as a rehabilitation material in drylands, useful for boosting ecosystem functions including stabilization of eroding soil surfaces. However, biocrust materials cultivated ex situ by humans inconsistently establish under field conditions. We tested two approaches aimed at improving field establishment of biocrust inoculum: exposing the organisms within the inoculum to abiotic stress in an attempt to harden them, and applying habitat ameliorations intended to reduce the stressfulness of the environment. We hypothesized that both approaches in concert would lead to the most consistent field establishment of biocrusts. Overall, addition of biocrust inoculum did enhance biocrust establishment over the 1.5‐year duration of the study but did not result in full recovery. Generally, hardened biocrust inoculum performed no better than inoculum that was not hardened, although one indicator (chlorophylla) was enhanced by addition of hardened inoculum in some circumstances. Temporary irrigation was initially an effective habitat amelioration but had no effect on biocrust establishment by 1.5 years. In contrast, application of jute net to the soil surface promoted biocrust establishment both in synergy with and in the absence of inoculum addition. We hypothesize that jute net stabilizes the soil surface, reduces abiotic stress, and enhances resource availability, overcoming barriers to establishment of biocrusts. Currently, there is broad support for the efficacy of habitat amelioration approaches in biocrust rehabilitation, but effective hardening techniques remain elusive.

 
more » « less
Award ID(s):
1638966
NSF-PAR ID:
10456085
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Restoration Ecology
Volume:
28
Issue:
S2
ISSN:
1061-2971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological soil crusts (biocrusts) are crucial components of dryland ecosystems, but they are slow to recover following disturbance. Herein, we evaluated several methods for restoring lichen‐moss biocrusts that included factorial applications of moss fragments in a water‐slurry (1) with and without lichen fragments (to restore biocrust taxonomic structure), (2) with and without clay (to facilitate establishment), and (3) with and without jute ground cloth (to facilitate establishment). Three and four years after inoculation, moss and lichen cover was up to five and eight times higher on jute ground cloth than on bare ground, respectively. Lichen cover was six times higher in plots where lichen fragments were added. Clay amendments did not increase moss or lichen establishment. To understand the effects of biocrust recovery on soil properties, we measured soil inorganic nitrogen, microbial biomass carbon, and soil water availability in restoration and control plots. Restored biocrusts decreased inorganic NH4‐N availability by 67% when compared to controls 3 years after inoculation, but did not influence the availability of inorganic NO3‐N, soil water, or microbial biomass carbon. Our results demonstrate that adding a biocrust inoculant to jute ground cloth can expedite recovery of lichen‐moss biocrust and reestablish its influence on soil properties within a few years.

     
    more » « less
  2. Biological soil crusts (biocrusts) and arbuscular mycorrhizal (AM) fungi are communities of soil organisms often targeted to assist in the achievement of multiple ecological restoration goals. In drylands, benefits conferred from biocrust and AM fungal inoculation, such as improved native plant establishment and soil stabilization, have primarily been studied separately. However, comparisons between these two types of soil inoculants and investigations into potential synergies between them, particularly at the plant community scale, are needed to inform on‐the‐ground management practices in drylands. We conducted two full‐factorial experiments—one in greenhouse mesocosms and one in field plots—to test the effects of AM fungal inoculation, biocrust inoculation, and their interaction on multiple measures of dryland restoration success. Biocrust inoculation promoted soil stabilization and plant drought tolerance, but had mixed effects on native plant diversity (positive in greenhouse, neutral in field) and productivity (negative in greenhouse, neutral in field). In greenhouse mesocosms, biocrust inoculation reduced plant biomass, which was antagonistic to % root length colonized by AM fungi. Inoculation with native or commercial AM fungi did not influence plant establishment, drought tolerance, or soil stabilization in either study, and few synergistic effects of simultaneous inoculation of AM fungi and biocrusts were observed. These results suggest that, depending on the condition of existing soil communities, inoculation with AM fungi may not be necessary to promote dryland restoration goals, while inoculation with salvaged biocrust inoculation may be beneficial in some contexts.

     
    more » « less
  3. Abstract

    Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis‐based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to 12 years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium,Microcoleus vaginatus, and enhanced nitrogen‐fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands.

     
    more » « less
  4. Drylands encompass over 40% of terrestrial ecosystems and face significant anthropogenic degradation causing a loss of ecosystem integrity, services, and deterioration of social‐ecological systems. To combat this degradation, some dryland restoration efforts have focused on the use of biological soil crusts (biocrusts): complex communities of cyanobacteria, algae, lichens, bryophytes, and other organisms living in association with the top millimeters of soil. Biocrusts are common in many ecosystems and especially drylands. They perform a suite of ecosystem functions: stabilizing soil surfaces to prevent erosion, contributing carbon through photosynthesis, fixing nitrogen, and mediating the hydrological cycle in drylands. Biocrusts have emerged as a potential tool in restoration; developing methods to implement effective biocrust restoration has the potential to return many ecosystem functions and services. Although culture‐based approaches have allowed researchers to learn about the biology, physiology, and cultivation of biocrusts, transferring this knowledge to field implementation has been more challenging. A large amount of research has amassed to improve our understanding of biocrust restoration, leaving us at an opportune time to learn from one another and to join approaches for maximum efficacy. The articles in this special issue improve the state of our current knowledge in biocrust restoration, highlighting efforts to effectively restore biocrusts through a variety of different ecosystems, across scales and utilizing a variety of lab and field methods. This collective work provides a useful resource for the scientific community as well as land managers.

     
    more » « less
  5. Stams, Alfons J. (Ed.)
    ABSTRACT Biological soil crusts (biocrusts) are communities of microbes that inhabit the surface of arid soils and provide essential services to dryland ecosystems. While resistant to extreme environmental conditions, biocrusts are susceptible to anthropogenic disturbances that can deprive ecosystems of these valuable services for decades. Until recently, culture-based efforts to produce inoculum for cyanobacterial biocrust restoration in the southwestern United States focused on producing and inoculating the most abundant primary producers and biocrust pioneers, Microcoleus vaginatus and members of the family Coleofasciculaceae (also called Microcoleus steenstrupii complex). The discovery that a unique microbial community characterized by diazotrophs, known as the cyanosphere, is intimately associated with M. vaginatus suggests a symbiotic division of labor in which nutrients are traded between phototrophs and heterotrophs. To probe the potential use of such cyanosphere members in the restoration of biocrusts, we performed coinoculations of soil substrates with cyanosphere constituents. This resulted in cyanobacterial growth that was more rapid than that seen for inoculations with the cyanobacterium alone. Additionally, we found that the mere addition of beneficial heterotrophs enhanced the formation of a cohesive biocrust without the need for additional phototrophic biomass within native soils that contain trace amounts of biocrust cyanobacteria. Our findings support the hitherto-unknown role of beneficial heterotrophic bacteria in the establishment and growth of biocrusts and allow us to make recommendations concerning biocrust restoration efforts based on the presence of remnant biocrust communities in disturbed areas. Future biocrust restoration efforts should consider cyanobacteria and their beneficial heterotrophic community as inoculants. IMPORTANCE The advancement of biocrust restoration methods for cyanobacterial biocrusts has been largely achieved through trial and error. Successes and failures could not always be traced back to particular factors. The investigation and application of foundational microbial interactions existing within biocrust communities constitute a crucial step toward informed and repeatable biocrust restoration methods. 
    more » « less