skip to main content

Title: Climate warming alters photosynthetic responses to elevated CO 2 in prairie plants

The impact of elevated CO2concentration ([CO2]) and climate warming on plant productivity in dryland ecosystems is influenced strongly by soil moisture availability. We predicted that the influence of warming on the stimulation of photosynthesis by elevated [CO2] in prairie plants would operate primarily through direct and indirect effects on soil water.


We measured light‐saturated photosynthesis (Anet), stomatal conductance (gs), maximum Rubisco carboxylation rate (Vcmax), maximum electron transport capacity (Jmax) and related variables in four C3plant species in the Prairie Heating and CO2Enrichment (PHACE) experiment in southeastern Wyoming. Measurements were conducted over two growing seasons that differed in the amount of precipitation and soil moisture content.


Anetin the C3subshrubArtemisia frigidaand the C3forbSphaeralcea coccineawas stimulated by elevated [CO2] under ambient and warmed temperature treatments. Warming by itself reducedAnetin all species during the dry year, but stimulated photosynthesis inS. coccineain the wet year. In contrast,Anetin the C3grassPascopyrum smithiiwas not stimulated by elevated [CO2] or warming under wet or dry conditions. Photosynthetic downregulation under elevated [CO2] in this species countered the potential stimulatory effect under improved water relations. Warming also reduced the magnitude of CO2‐induced down‐regulation in this grass, possibly by sustaining high levels of carbon utilization.


Direct and indirect effects of elevated [CO2] and warming on soil water was an overriding factor influencing patterns ofAnetin this semi‐arid temperate grassland, emphasizing the important role of water relations in driving grassland responses to global change.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Botany
Page Range / eLocation ID:
p. 1238-1252
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Global changes can interact to affect photosynthesis and thus ecosystem carbon capture, yet few multi‐factor field studies exist to examine such interactions. Here, we evaluate leaf gas exchange responses of five perennial grassland species from four functional groups to individual and interactive global changes in an open‐air experiment in Minnesota, USA, including elevated CO2(eCO2), warming, reduced rainfall and increased soil nitrogen supply. All four factors influenced leaf net photosynthesis and/or stomatal conductance, but almost all effects were context‐dependent, i.e. they differed among species, varied with levels of other treatments and/or depended on environmental conditions. Firstly, the response of photosynthesis to eCO2depended on species and nitrogen, became more positive as vapour pressure deficit increased and, for a C4grass and a legume, was more positive under reduced rainfall. Secondly, reduced rainfall increased photosynthesis in three functionally distinct species, potentially via acclimation to low soil moisture. Thirdly, warming had positive, neutral or negative effects on photosynthesis depending on species and rainfall. Overall, our results show that interactions among global changes and environmental conditions may complicate predictions based on simple theoretical expectations of main effects, and that the factors and interactions influencing photosynthesis vary among herbaceous species.

    more » « less
  2. Abstract

    The effects of climate change on plants and ecosystems are mediated by plant hydraulic traits, including interspecific and intraspecific variability of trait phenotypes. Yet, integrative and realistic studies of hydraulic traits and climate change are rare. In a semiarid grassland, we assessed the response of several plant hydraulic traits to elevated CO2(+200 ppm) and warming (+1.5 to 3°C; day to night). For leaves of five dominant species (three graminoids and two forbs), and in replicated plots exposed to 7 years of elevated CO2, warming, or ambient climate, we measured: stomatal density and size, xylem vessel size, turgor loss point, and water potential (pre‐dawn). Interspecific differences in hydraulic traits were larger than intraspecific shifts induced by elevated CO2and/or warming. Effects of elevated CO2were greater than effects of warming, and interactions between treatments were weak or not detected. The forbs showed little phenotypic plasticity. The graminoids had leaf water potentials and turgor loss points that were 10% to 50% less negative under elevated CO2; thus, climate change might cause these species to adjust their drought resistance strategy away from tolerance and toward avoidance. The C4 grass also reduced allocation of leaf area to stomata under elevated CO2, which helps explain observations of higher soil moisture. The shifts in hydraulic traits under elevated CO2were not, however, simply due to higher soil moisture. Integration of our results with others' indicates that common species in this grassland are more likely to adjust stomatal aperture in response to near‐term climate change, rather than anatomical traits; this contrasts with apparent effects of changing CO2on plant anatomy over evolutionary time. Future studies should assess how plant responses to drought may be constrained by the apparent shift from tolerance (via low turgor loss point) to avoidance (via stomatal regulation and/or access to deeper soil moisture).

    more » « less
  3. Abstract

    Climate change has intensified the hydrologic cycle globally, increasing the magnitude and frequency of large precipitation events, or deluges. Dryland ecosystems are expected to be particularly responsive to increases in deluge size, as their ecological processes are largely dependent on distinct soil moisture pulses. To better understand how increasing deluge size will affect ecosystem function, we conducted a field experiment in a native semiarid shortgrass steppe (Colorado, USA). We quantified ecological responses to a range of deluge sizes, from moderate to extreme, with the goal of identifying response patterns and thresholds beyond which ecological processes would not increase further (saturate). Using a replicated regression approach, we imposed single deluges that ranged in size from 20 to 120 mm (82.3rd to >99.9th percentile of historical event size) on undisturbed grassland plots. We quantified pre‐ and postdeluge responses in soil moisture, soil respiration, and canopy greenness, as well as leaf water potential, growth, and flowering of the dominant grass species (Bouteloua gracilis). We also measured end of season above‐ and belowground net primary production (ANPP, BNPP). As expected, this water‐limited ecosystem responded strongly to the applied deluges, but surprisingly, most variables increased linearly with deluge size. We found little evidence for response thresholds within the range of deluge sizes imposed, at least during this dry year. Instead, response patterns reflected the linear increase in the duration of elevated soil moisture (2–22 days) with increasing event size. Flowering ofB. gracilisand soil respiration responded particularly strongly to deluge size (14‐ and 4‐fold increases, respectively), as did ANPP and BNPP (~60% increase for both). Overall, our results suggest that this semiarid grassland will respond positively and linearly to predicted increases in deluge size, and that event sizes may need to exceed historical magnitudes, or occur during wet years, before responses saturate.

    more » « less
  4. Abstract

    Rapid Arctic warming is causing permafrost to thaw and exposing large quantities of soil organic carbon (C) to potential decomposition. In dry upland tundra systems, subsidence from thawing permafrost can increase surface soil moisture resulting in higher methane (CH4) emissions from newly waterlogged soils. The proportion of C released as carbon dioxide (CO2) and CH4remains uncertain as previously dry landscapes transition to a thawed state, resulting in both wetter and drier microsites. To address how thaw and moisture interact to affect total C emissions, we measured CH4and CO2emissions from paired chambers across thaw and moisture gradients created by nine years of experimental soil warming in interior Alaska. Cumulative growing season (May–September) CH4emissions were elevated at both wetter (216.1–1,099.4 mg CH4‐C m−2) and drier (129.7–392.3 mg CH4‐C m−2) deeply thawed microsites relative to shallow thaw (55.6–215.7 mg CH4‐C m−2) and increased with higher deep soil temperatures and permafrost thaw depth. Interannual variability in CH4emissions was driven by wet conditions in graminoid‐dominated plots that generated >70% of emissions in a wet year. Shoulder season emissions were equivalent to growing season CH4emissions rates in the deeply thawed, warmed soils, highlighting the importance of non‐growing season CH4emissions. Net C sink potential was reduced in deeply thawed wet plots by 4%–42%, and by 3.5%–8% in deeply thawed drier plots due to anaerobic respiration, suggesting that some dry upland tundra landscapes may transition into stronger CH4sources in a warming Arctic.

    more » « less
  5. Abstract

    The fraction of primary productivity allocated below‐ground accounts for a larger flow of carbon than above‐ground productivity in most grassland ecosystems. Here, we addressed the question of how root herbivory affects below‐ground allocation of a dominant shortgrass prairie grass in response to water availability. We predicted that high levels of root herbivory by nematodes, as seen under extreme drought in sub‐humid grasslands, would prevent the high allocation to root biomass normally expected in response to low water availability.

    We exposed blue gramaBouteloua gracilis, which accounts for most of the net primary productivity in the shortgrass steppe of the central and southern Great Plains, to three levels of water availability from extreme low to intermediate and extreme high crossed with a gradient of root­herbivore per cent abundance relative to the total nematode community in soil microcosms.

    As hypothesized, the effect of water availability on below‐ground biomass allocation was contingent on the proportion of root herbivores in the nematode community. The relationship between below‐ground biomass allocation and water availability was negative in the absence of root herbivory, but tended to reverse with increasing abundance of root feeders. Increasing abundance of root‐feeding nematodes prevented grasses from adjusting their allocation patterns towards root mass that would, in turn, increase water uptake under dry conditions. Therefore, below‐ground trophic interactions weakened plant responses and increased the negative effects of drought on plants.

    Our work suggests that plant responses to changes in precipitation result from complex interactions between the direct effect of precipitation and indirect effects through changes in the below‐ground trophic web. Such complex responses challenge current predictions of increasing plant biomass allocation below‐ground in water‐stressed grasslands, and deserve further investigation across ecosystems and in field conditions.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less