Abstract Groundwater discharge is an important mechanism through which fresh water and associated solutes are delivered to the ocean. Permafrost environments have traditionally been considered hydrogeologically inactive, yet with accelerated climate change and permafrost thaw, groundwater flow paths are activating and opening subsurface connections to the coastal zone. While warming has the potential to increase land-sea connectivity, sea-level change has the potential to alter land-sea hydraulic gradients and enhance coastal permafrost thaw, resulting in a complex interplay that will govern future groundwater discharge dynamics along Arctic coastlines. Here, we use a recently developed permafrost hydrological model that simulates variable-density groundwater flow and salinity-dependent freeze-thaw to investigate the impacts of sea-level change and land and ocean warming on the magnitude, spatial distribution, and salinity of coastal groundwater discharge. Results project both an increase and decrease in discharge with climate change depending on the rate of warming and sea-level change. Under high warming and low sea-level rise scenarios, results show up to a 58% increase in coastal groundwater discharge by 2100 due to the formation of a supra-permafrost aquifer that enhances freshwater delivery to the coastal zone. With higher rates of sea-level rise, the increase in discharge due to warming is reduced to 21% as sea-level rise decreased land-sea hydraulic gradients. Under lower warming scenarios for which supra-permafrost groundwater flow was not established, discharge decreased by up to 26% between 1980 and 2100 for high sea-level rise scenarios and increased only 8% under low sea-level rise scenarios. Thus, regions with higher warming rates and lower rates of sea-level change (e.g. northern Nunavut, Canada) will experience a greater increase in discharge than regions with lower warming rates and higher rates of sea-level change. The magnitude, location and salinity of discharge have important implications for ecosystem function, water quality, and carbon dynamics in coastal zones.
more »
« less
Wind-modulated groundwater discharge along a microtidal Arctic coastline
Abstract Groundwater discharge transports dissolved constituents to the ocean, affecting coastal carbon budgets and water quality. However, the magnitude and mechanisms of groundwater exchange along rapidly transitioning Arctic coastlines are largely unknown due to limited observations. Here, using first-of-its-kind coastal Arctic groundwater timeseries data, we evaluate the magnitude and drivers of groundwater discharge to Alaska’s Beaufort Sea coast. Darcy flux calculations reveal temporally variable groundwater fluxes, ranging from −6.5 cm d−1(recharge) to 14.1 cm d−1(discharge), with fluctuations in groundwater discharge or aquifer recharge over diurnal and multiday timescales during the open-water season. The average flux during the monitoring period of 4.9 cm d−1is in line with previous estimates, but the maximum discharge exceeds previous estimates by over an order-of-magnitude. While the diurnal fluctuations are small due to the microtidal conditions, multiday variability is large and drives sustained periods of aquifer recharge and groundwater discharge. Results show that wind-driven lagoon water level changes are the dominant mechanism of fluctuations in land–sea hydraulic head gradients and, in turn, groundwater discharge. Given the microtidal conditions, low topographic relief, and limited rainfall along the Beaufort Sea coast, we identify wind as an important forcing mechanism of coastal groundwater discharge and aquifer recharge with implications for nearshore biogeochemistry. This study provides insights into groundwater flux dynamics along this coastline over time and highlights an oft overlooked discharge and circulation mechanism with implications towards refining solute export estimates to coastal Arctic waters.
more »
« less
- PAR ID:
- 10456140
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 18
- Issue:
- 9
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 094042
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic.more » « less
-
Abstract Coastal aquifers play an important role in marine ecosystems by providing high fluxes of nutrients and solutes via submarine groundwater discharge pathways. The physical and chemical characterization of these dynamic systems is foundational to understanding the extent and magnitude of hydrogeologic processes and their subsequent contributions to the marine environment. We describe a km‐scale experimental field site located in a glaciofluvial delta entering Kachemak Bay, Alaska. Our characterization applies geophysical (ERT and HVSR), hydrogeologic (grain size analyses, slug tests and tidal response analyses) and geochemical (major ions and stable water isotopes) methods to describe the complexity of coastal aquifers in proglacial environments currently experiencing rapid transformations. The hydrogeologic and geophysical techniques revealed thick (20–84 m) sediments dominated by sands and gravels and delineated zones of freshwater, brackish water and saltwater at both high and low tides within the subterranean estuary. Estimates of hydraulic conductivities via multiple approaches ranged from 2 to 250 m d−1, with means across the four methods within the same order of magnitude. Tidal response analyses highlighted a coastal aquifer in strong connection with the sea as evidenced by clear spring‐ and neap‐tidal signals within a proximal piezometric hydrograph. Geochemical sampling revealed coastal groundwaters as substantially enriched in solutes compared to proximal river samples with limited variability across seasons. A clear connection between the Wosnesenski River and the adjacent aquifer was also observed, with concentrated recharge from the river corridor during the meltwater season. This combination of approaches provides the basis for a conceptual model for coastal aquifer systems within the Gulf of Alaska and an upscaled mean daily yield of freshwater and solutes from the delta subsurface. Our findings are critical for subsequent numerical simulations of groundwater flow, tidal pumping and chemical reactions and transport in these understudied environments. This approach may be applied for low‐cost, large‐scale hydrogeologic investigations in coastal areas and may be particularly useful for remote sites where access and mobility are challenging.more » « less
-
Abstract Supra‐permafrost submarine groundwater discharge (SGD) in the Arctic is potentially important for coastal biogeochemistry and will likely increase over the coming decades owing to climate change. Despite this, land‐to‐ocean material fluxes via SGD in Arctic environments have seldom been quantified. This study used radium (Ra) isotopes to quantify SGD fluxes to an Arctic coastal lagoon (Simpson Lagoon, Alaska) during five sampling periods between 2021 and 2023. Using a Ra mass balance model, we found that the SGD water flux was substantial and dependent on environmental conditions. No measurable SGD was detected during the spring sampling period (June 2022), when the lagoon was partially ice‐covered. During ice‐free periods, the main driver of SGD in this location is wind‐driven lagoon water level changes, not tides, which control surface water recirculation through sediments along the lagoon boundary. A combination of wind strength and direction led to low SGD fluxes in July 2022, with an SGD flux of (6 ± 3) × 106 m3 d−1, moderate fluxes in August 2021 and July 2023, which had an average flux of (17 ± 9) × 106 m3 d−1, and high fluxes in October 2022, at (79 ± 16) × 106 m3 d−1. This work demonstrates how soil and environmental conditions in the Arctic impact Ra mobilization, laying a foundation for future SGD studies in the Arctic and shedding light on the major processes driving Ra fluxes in this important environment.more » « less
-
Quantifying the freshwater component of submarine groundwater discharge (SGD) is critical in the analysis of terrestrial influences on marine ecosystems and in assessing the water budget and groundwater recharge of coastal aquifers. In semi-arid to arid settings, this quantification is difficult because low SGD rates translate into low concentrations of groundwater solutes in coastal waters. In this study, fresh SGD (FSGD) was quantified for Toyon Bay on Catalina Island, California, for wet and dry seasons using a combination of radon and salinity mass balance models, and the results were compared to watershed-specific groundwater recharge rates obtained from soil water balance (SWB) modeling. Calculated FSGD rates vary only slightly with season and are remarkably similar to the recharge estimates from the SWB model. While sensitivity analyses revealed FSGD estimates to be significantly influenced by uncertainties in geochemical variability of the groundwater end-member and fluctuations of water depth, the results of this study support the SWB-model-based recharge rates. The findings of this study highlight the utility of the radon-and-salinity-mass-balance-based FSGD estimates as groundwater recharge calibration targets, which may aid in establishing more refined sustainable groundwater yields.more » « less