The production of biofuels from lignocellulosic biomass using carbohydrate-active enzymes like cellulases is key to a sustainable energy production. Understanding the adsorption mechanism of cellulases and associated binding domain proteins down to the molecular level details will help in the rational design of improved cellulases. In nature, carbohydrate-binding modules (CBMs) from families 17 and 28 often appear in tandem appended to the C-terminus of several endocellulases. Both CBMs are known to bind to the amorphous regions of cellulose non-competitively and show similar binding affinity towards soluble cello-oligosaccharides. Based on the available crystal structures, these CBMs may display a uni-directional binding preference towards cello-oligosaccharides (based on how the oligosaccharide was bound within the CBM binding cleft). However, molecular dynamics (MD) simulations have indicated no such clear preference. Considering that most soluble oligosaccharides are not always an ideal substrate surrogate to study the binding of CBMs to the native cell wall or cell surface displayed glycans, it is critical to use alternative reagents or substrates. To better understand the binding of type B CBMs towards smaller cello-oligosaccharides, we have developed a simple solid-state depletion or pull-down binding assay. Here, we specifically orient azido-labeled carbohydrates from the reducing end to alkyne-labeled micron-sized bead surfaces, using click chemistry, to mimic insoluble cell wall surface-displayed glycans. Our results reveal that both family 17 and 28 CBMs displayed a similar binding affinity towards cellohexaose-modified beads, but not cellopentaose-modified beads, which helps rationalize previously reported crystal structure and MD data. This may indicate a preferred uni-directional binding of specific CBMs and could explain their co-evolution as tandem constructs appended to endocellulases to increase amorphous cellulose substrate targeting efficiency. Overall, our proposed workflow can be easily translated to measure the affinity of glycan-binding proteins to click-chemistry based immobilized surface-displayed carbohydrates or antigens.
more »
« less
Carbohydrate‐binding domains facilitate efficient oligosaccharides synthesis by enhancing mutant catalytic domain transglycosylation activity
Abstract Chemoenzymatic approaches using carbohydrate‐active enzymes (CAZymes) offer a promising avenue for the synthesis of glycans like oligosaccharides. Here, we report a novel chemoenzymatic route for cellodextrins synthesis employed by chimeric CAZymes, akin to native glycosyltransferases, involving the unprecedented participation of a “non‐catalytic” lectin‐like domain or carbohydrate‐binding modules (CBMs) in the catalytic step for glycosidic bond synthesis using β‐cellobiosyl donor sugars as activated substrates. CBMs are often thought to play a passive substrate targeting role in enzymatic glycosylation reactions mostly via overcoming substrate diffusion limitations for tethered catalytic domains (CDs) but are not known to participate directly in any nucleophilic substitution mechanisms that impact the actual glycosyl transfer step. This study provides evidence for the direct participation of CBMs in the catalytic reaction step for β‐glucan glycosidic bonds synthesis enhancing activity for CBM‐based CAZyme chimeras by >140‐fold over CDs alone. Dynamic intradomain interactions that facilitate this poorly understood reaction mechanism were further revealed by small‐angle X‐ray scattering structural analysis along with detailed mutagenesis studies to shed light on our current limited understanding of similar transglycosylation‐type reaction mechanisms. In summary, our study provides a novel strategy for engineering similar CBM‐based CAZyme chimeras for the synthesis of bespoke oligosaccharides using simple activated sugar monomers.
more »
« less
- Award ID(s):
- 1704679
- PAR ID:
- 10456212
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Biotechnology and Bioengineering
- Volume:
- 117
- Issue:
- 10
- ISSN:
- 0006-3592
- Page Range / eLocation ID:
- p. 2944-2956
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Carbohydrate active enzymes (CAZymes) are made by various organisms for complex carbohydrate metabolism. Genome mining of CAZymes has become a routine data analysis in (meta-)genome projects, owing to the importance of CAZymes in bioenergy, microbiome, nutrition, agriculture, and global carbon recycling. In 2012, dbCAN was provided as an online web server for automated CAZyme annotation. dbCAN2 (https://bcb.unl.edu/dbCAN2) was further developed in 2018 as a meta server to combine multiple tools for improved CAZyme annotation. dbCAN2 also included CGC-Finder, a tool for identifying CAZyme gene clusters (CGCs) in (meta-)genomes. We have updated the meta server to dbCAN3 with the following new functions and components: (i) dbCAN-sub as a profile Hidden Markov Model database (HMMdb) for substrate prediction at the CAZyme subfamily level; (ii) searching against experimentally characterized polysaccharide utilization loci (PULs) with known glycan substates of the dbCAN-PUL database for substrate prediction at the CGC level; (iii) a majority voting method to consider all CAZymes with substrate predicted from dbCAN-sub for substrate prediction at the CGC level; (iv) improved data browsing and visualization of substrate prediction results on the website. In summary, dbCAN3 not only inherits all the functions of dbCAN2, but also integrates three new methods for glycan substrate prediction.more » « less
-
Protein adsorption to solid carbohydrate interfaces is critical to many biological processes, particularly in biomass deconstruction. To engineer more-efficient enzymes for biomass deconstruction into sugars, it is necessary to characterize the complex protein–carbohydrate interfacial interactions. A carbohydrate-binding module (CBM) is often associated with microbial surface-tethered cellulosomes or secreted cellulase enzymes to enhance substrate accessibility. However, it is not well known how CBMs recognize, bind, and dissociate from polysaccharides to facilitate efficient cellulolytic activity, due to the lack of mechanistic understanding and a suitable toolkit to study CBM–substrate interactions. Our work outlines a general approach to study the unbinding behavior of CBMs from polysaccharide surfaces using a highly multiplexed single-molecule force spectroscopy assay. Here, we apply acoustic force spectroscopy (AFS) to probe a Clostridium thermocellum cellulosomal scaffoldin protein (CBM3a) and measure its dissociation from nanocellulose surfaces at physiologically relevant, low force loading rates. An automated microfluidic setup and method for uniform deposition of insoluble polysaccharides on the AFS chip surfaces are demonstrated. The rupture forces of wild-type CBM3a, and its Y67A mutant, unbinding from nanocellulose surfaces suggests distinct multimodal CBM binding conformations, with structural mechanisms further explored using molecular dynamics simulations. Applying classical dynamic force spectroscopy theory, the single-molecule unbinding rate at zero force is extrapolated and found to agree with bulk equilibrium unbinding rates estimated independently using quartz crystal microbalance with dissipation monitoring. However, our results also highlight critical limitations of applying classical theory to explain the highly multivalent binding interactions for cellulose–CBM bond rupture forces exceeding 15 pN.more » « less
-
null (Ed.)Abstract PULs (polysaccharide utilization loci) are discrete gene clusters of CAZymes (Carbohydrate Active EnZymes) and other genes that work together to digest and utilize carbohydrate substrates. While PULs have been extensively characterized in Bacteroidetes, there exist PULs from other bacterial phyla, as well as archaea and metagenomes, that remain to be catalogued in a database for efficient retrieval. We have developed an online database dbCAN-PUL (http://bcb.unl.edu/dbCAN_PUL/) to display experimentally verified CAZyme-containing PULs from literature with pertinent metadata, sequences, and annotation. Compared to other online CAZyme and PUL resources, dbCAN-PUL has the following new features: (i) Batch download of PUL data by target substrate, species/genome, genus, or experimental characterization method; (ii) Annotation for each PUL that displays associated metadata such as substrate(s), experimental characterization method(s) and protein sequence information, (iii) Links to external annotation pages for CAZymes (CAZy), transporters (UniProt) and other genes, (iv) Display of homologous gene clusters in GenBank sequences via integrated MultiGeneBlast tool and (v) An integrated BLASTX service available for users to query their sequences against PUL proteins in dbCAN-PUL. With these features, dbCAN-PUL will be an important repository for CAZyme and PUL research, complementing our other web servers and databases (dbCAN2, dbCAN-seq).more » « less
-
Abstract Carbohydrate Active EnZymes (CAZymes) are significantly important for microbial communities to thrive in carbohydrate rich environments such as animal guts, agricultural soils, forest floors, and ocean sediments. Since 2017, microbiome sequencing and assembly have produced numerous metagenome assembled genomes (MAGs). We have updated our dbCAN-seq database (https://bcb.unl.edu/dbCAN_seq) to include the following new data and features: (i) ∼498 000 CAZymes and ∼169 000 CAZyme gene clusters (CGCs) from 9421 MAGs of four ecological (human gut, human oral, cow rumen, and marine) environments; (ii) Glycan substrates for 41 447 (24.54%) CGCs inferred by two novel approaches (dbCAN-PUL homology search and eCAMI subfamily majority voting) (the two approaches agreed on 4183 CGCs for substrate assignments); (iii) A redesigned CGC page to include the graphical display of CGC gene compositions, the alignment of query CGC and subject PUL (polysaccharide utilization loci) of dbCAN-PUL, and the eCAMI subfamily table to support the predicted substrates; (iv) A statistics page to organize all the data for easy CGC access according to substrates and taxonomic phyla; and (v) A batch download page. In summary, this updated dbCAN-seq database highlights glycan substrates predicted for CGCs from microbiomes. Future work will implement the substrate prediction function in our dbCAN2 web server.more » « less
An official website of the United States government
